MFang =al FOR KIDS WHO LIKE TO SOLVE PROBLEMS

MCP GOMPEITIION SPECLAL EDITION

CONGRATULATIONS TO OUR GIRLS IN MATH AT YALE WINNERS!

RSM \sim
Russian School of Mathematics

CDNTENT

Toys and Games，\＃8， 2024

RSM MCP／NMCP Contest Winners
$\ldots 2$
Scalify－Magnify！

－○○○

Missing Pieces

－ 00

MChallenge ．． 12
Beat the Offbeat Ogre ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 14
－OOO
Game of Trust

－○○

From a Journal Found on a Desolate Island

Nate fram The Eartar

There is no such thing as a＂math person．＂However， a child＇s early learning experiences directly impact his perception of his mathematics ability．When children are taught mathematics through fun and engaging problems，they not only build fluency in and an intuitive understanding of mathematics， but they also develop critical problem－solving skills．
This issue of MPower！focuses on toys and games． Whether you play chess or dominoes，roll dice，or arrange tiles on a board，you can explore the game＇s underlying logic and strategy．Both game theory and probability theory originated with the study of games．Now these mathematics are used in physics and biology，in finance and economics， in political science and AI．Which game will lead you to a wonderful math discovery？
We hope you enjoy the stories and problems inside．

KEY

OOOO GRADES $1 \&$ UP
， 0000 0000 ロレEGTIロNS，CロMMENTS．

ーロா토TIロNS

Connect with us at：MPowerarussianschool．com

Congratulations！ GIRLS IN MATH AT YALE COMPETITION

In the Individual Round，RSM students Selena Ge and Anika Mittal secured

$2^{\text {nd }} \& 3^{\text {rd }}$ place

Team RSM placed $7^{\text {th }}$ overall！

SELENA GE
4 Years with RSM
$2^{\text {nd }}$ in Individual
Round

ANIKA MITTAL

8 Years with RSM
8 Years with RSM ALLI KATILA－
3 MIIKKULAINEN
Round 6 Years with RSM 9 Years with RSM

GRADE 4		Eunice Shey Ishan Sinha	Online MCP Bay Area MCP, CA
4re Advait Anand	Bay Area MCP, CA	Jonathan Cohen	Herndon, VA
The Agastya Mantha	Metrowest, MA	Leo Silverman	Lexington, MA
Sime Ishaan Sharma	Metrowest, MA	Maria Pozhogina	Andover, MA
4i00 Nate Yang	Online MCP	Rohan Hallur	Bay Area MCP, CA
Tre Owen Li	Online MCP	Shubhit Jain	Online MCP
Aditya Dhamdhere	Bay Area MCP, CA		
Alex Louie	Bay Area MCP, CA	GRADE 6 Level 1	
Anirudh Rengarajan	Online MCP		
Avik Saha	Bay Area MCP, CA	Gioia De Noue	Online MCP
Beliz Tuna	Online MCP	Jayden Sun	Online MCP
Matthew Popescu	Online MCP	Mona Hou	Online MCP
		Pranav Kurupati	Online MCP
GRADE 5 Level 1		Virinchi Madireddy	Online MCP
		Vivasvan Gupta	Online MCP
See Aditya Karri	Online MCP		
Charles Sokolov	Online MCP	GRADE 6 Level 2	
Sharvil Jamdade	Online MCP		
Amy Zhang	Online MCP	Alan Yu	Bay Area MCP, CA
Daniel Zheng	Metrowest, MA	Arjun Poola	Bay Area MCP, CA
James Ho	Metrowest, MA	Avani Daftuar	Online MCP
Mandy Liu	Metrowest, MA	Emma Xu	Bay Area MCP, CA
GRADE 5 Level 2		Jessie Wang	Bay Area MCP, CA
		Paarth Bansal	Bay Area MCP, CA
To Aarnav Daivik	Online MCP	Sofia Rosolovskaya	Online MCP
To Arjun Shenoy	Bay Area MCP, CA	Steven Yang	Bay Area MCP, CA
-m Prasanna Vijay	Bay Area MCP, CA	Tiana Liu	Online MCP
tee Zere Nagashybek	Herndon, VA	Warren Chai	Online MCP
Anaye Agrawal	Bay Area MCP, CA		
Carol Ma	Online MCP		
Erik Prokhorov	Online MCP		

"Have you seen?!" asked Bella. "Mr. Stephenson sent us a steam train for Christmas!" "A real one?" asked Bella's younger brother Jan
"Absolutely! It's made of steel and has all the teensy wheels, mini tubes, and even the dainty whistle!" Jan pondered for a moment and then doubted his sister. "Teensy-tiny? Seriously? How can train wheels be tiny?"
"Ah," answered Bella, "well, of course it's a toy train at a scale of $1: 64$, but it's made exactly like a real one! It's called The Santa Fe Super Express!"
"Well," said Jan skeptically, "then it must be super heavy. If the real train is at least 100 tons, then ours is 100 divided by $64 \ldots$, which is more than a ton, right?" Bella was puzzled. The calculations were on target, but she could lift the model train by herself! How could that be?
Later, Bella was doing her homework and suddenly understood. Her homework problem asked, "How many cubic centimeters are in 1 cubic meter?" And the answer was not 100! It was 1,000,000! So - of course - her wonderful toy model weighs $64 \times 64 \times 64=262,144$ times less, not just 64 times less than the real train!

Princess Elara is destined to marry a person who gives her a magic diamond. Sir Aldric the Modest only has 1 gold coin in his wallet, but he decides to try his luck. In the window of a magic jewelry store, he sees a huge diamond worth 1,000,000 gold coins. The jewelsmith tells Sir Aldric that the cost of a diamond is proportional to the square of its mass. If a diamond is twice as heavy as another diamond, then it is four times as expensive. And if a diamond is three times as heavy as another diamond, then it is nine times as expensive. How many times must the size of the diamond in the window be reduced for Sir Aldric to afford it?

The next morning, Jan was playing with his cat Loki, who was bravely hunting for Jan's stuffed deer. "You're just a scary tiger!" teased Jan, "But you're just a little too small." Loki did not answer, and instead prepared to grab a victim. "If only I had a magic wand," said Jan, "I would make you a tiger with a wave of my wand. What would be the name of the spell? Oh, I know! 'Scalify-magnify 4!' Oh, Loki, you are the most powerful tiger now! You are the size of a Bengal tiger, the biggest cat on the planet! Wait, no, no! It's not enough! 'Scalify-magnify 100!' Now you are 100 times as tall as a Bengal tiger! You are a Super Tiger! I will call you Centum-Tigris!"
"Hold on," said Bella. "It's not that simple! Do you think Centum-Tigris, a Bengal tiger, or Loki our house cat is more powerful?"

Jan was puzzled. "Hmm... I have always wondered why elephants and hippos have strong legs but cannot jump. And frogs and grasshoppers have thin legs, but they are the best jumpers in the animal world! So, would my Centum-Tigris not be able to jump either? Why wouldn't he?"
"I think I know why! This is all because volume grows like a power of 3 while area grows like a power of 2," said Bella.
"Hmmm.... This sounds complicated. Is it like our model train?"
"Yes, exactly! And I think I figured out why elephants have huge ears and skin wrinkles - they help with overheating! Heat escapes through all the extra surface area and cools them off!"

Jan thought for some time. He was skeptical. "So, if that's true, tiny animals would have the opposite problem. They would cool off way too quickly. How could they fight that? They don't have heaters in their homes like we do. Ah-ha!"
"Oh, it's actually simple. I read about it in the children's encyclopedia! Small animals have to eat a lot to replace all the energy that they lose trying to keep warm."
"You know what, I think you're right. I watched this one movie about dinosaurs at the science museum. And the guy said that huge dinosaurs had funny cooling strategies. So, they were sweating like crazy and got some weird brain ventilation system - it worked through the nose!
But still... you may be right, but you spoiled my game! So, I will now magnify my paper airplane, and I will fly away from you! Scalify-magnify 100!"

Will the paper airplane still glide on air if Jan makes it 100 times as large?

1

- ○○○

Jake has seven cards with the digits $0,1,3,4,6,7$, and 8 . He puts all seven cards in a row and gets a seven-digit number. What is the least possible odd number Jake can get?

2
Stephen has three spinners, which are shown below. He spins the first spinner and gets a digit. If the digit is odd, he spins the second spinner, but if the digit is even, he spins the third spinner instead. For each of the two spins, Stephen writes down the digit he gets, so he ends up with a two-digit number in which the tens digit is from the first spinner. How many different two-digit numbers can Stephen get?

$+\cdots$

Mom has two identical chocolate bars and five㔀ical coid. She want to Anita, Brian, and Chloe. In how many ways can she do it?

4
Some RSM 4th graders, all of whom were born in the same year, signed up for an "Invent a board game" contest. Ms. Clever said, "I don't know any of the students yet. But I know for sure that at least 6 of them were born on the same day of the week. However, I do not know for sure whether at least 4 of the students were born in the same month." How many students signed up for the contest? any adjacent cell that's relatively lower than his current cell. In how many ways can Billy get to cell Z ?

6

- 000

Jane cut out the net shown below and folded it into a cube. What number is opposite the side labeled 6?

Audrey has a rectangular piece of cardboard with a length of 54 inches and a width of 21 inches. She starts to cut the cardboard into pieces for a new board game that she invented. With each cut, Audrey cuts off the largest possible square and continues until she only has squares left. How many squares does she have?

8
The Games Club meets all seven days
of the week but only plays "Snacks and Splatters" on Mondays, Wednesdays, and Thursdays. Sophia wants to go to Games Club for 9 days in a row, and she wants to play "Snacks and Splatters" on as many days as possible. What day of the week should Sophia start going to the club?

BEAT THE ORFBEAT OGRE

Game of Trust

Did you know that some mathematicians study games? In fact, game theory is a special branch of mathematics that focuses on optimal behavior in games. The games that mathematicians study are different from what we play with our friends, but similar games are all around us. Let's explore a famous thought experiment called...

THE PRISONER'S DILEMMA

Two people are accused of committing a crime together and are held in separate prisons. Each must decide whether to keep silent or to confess and betray the other. If both prisoners stay silent, each will be sentenced to 1 year in prison. If one of the prisoners confesses and betrays the other while the second prisoner remains silent, the betrayer will go free, while the silent prisoner will serve 10 years in prison. However, if both confess and betray the other, each will serve 5 years in prison. What should the prisoners do if each is concerned only with his own sentence?
Hold on! Is this a game? Mathematically speaking, yes, it is. In game theory, a game is any situation in which all the participants make choices, and what happens next depends on the choices made. Let's organize the prisoner's game into a payoff table that shows all four of the possible outcomes of the game.

The first prisoner thinks, "I don't know for sure what he will do. If he betrays me, it'd be better to betray him, and serve 5 years instead of 10 . On the other hand, if he stays silent, it'd be better to betray him and go free. So, whatever he does, I always do better if I betray him."
$2^{\text {nd }}$ prisoner's choice

The second prisoner follows the same logic. So, it is highly likely that each will betray the other and get a 5 year sentence.

Could each prisoner serve only 1 year? Yes, but that outcome is unlikely since it relies on mutual trust: the only way either prisoner would stay silent is if he believes the other will do the same. A lack of mutual trust is a key feature in this game!

But there is a paradox in the Prisoner's Dilemma: the best outcome seems unreachable! Since both players have initially chosen to betray, if only one prisoner then changes his strategy, he will get more years in prison than he has now. This often happens in games - if you change your initial strategy and the other player does not, you often become worse off than you were.
When there is no reason for any single player in a game to change his strategy, we call it a Nash equilibrium. In our payoff table, the Betray/Betray cell is the Nash equilibrium. So, why do we need a special name to describe this strange situation? Will we ever face this dilemma in real life? Yes, we will, because prisoners and non-prisoners alike play games like this! We play it...

Let's say two imaginary companies, A and B, are in the same industry. If A and B come to an agreement and set high prices, O 0 they each receive a profit of $\$ 700,000$. However, if A breaks 어 $\stackrel{H}{3}$ the agreement by lowering prices, A captures the market
\subseteq and gains an even greater profit of $\$ 900,000$ while
.ㄷ. B's profit decreases to $\$ 100,000$.

However, if each company tries to reduce its own risk and outmaneuver the other, both will lower prices and achieve a profit of $\$ 300,000$ each. This is the Nash equilibrium.

So, as in the Prisoner's Dilemma, it is a matter of trust. If businesses trust each other, they can potentially team up. But this is exactly what the government keeps an eye on! In the United States, antitrust laws prevent companies from coordinating prices. Set prices (and wages) disrupt the competitive free market. So, trust and cooperation are not necessarily "good," and for businesses, are sometimes illegal.

000

John Forbes Nash Jr. (1928-2015)

 was an outstanding mathematician. He discovered the possibility of a non-cooperative stable equilibrium in games. Nash was awarded the 1994 Nobel Prizein Economics for his achievements in game theory. Though Nash struggled with mental health issues, he continued his research. His life was loosely portrayed in the movie Beautiful Mind, an inspiring and encouraging story about the strength and beauty of the mind.

Two players are driving toward each other in a video game．They can either keep driving straight or swerve away．If neither swerves，each player gets the highest penalty for the collision： or swerve away．If neither swerves，each player gets the highest penalty for the collision：
$(-1000,-1000)$ ．If both drivers swerve，they are both safe and the payoff is $(0,0)$ ．If one driver swerves while the other keeps going straight，the player who goes straight gets to yell＂Chicken！＂ and gets +1 ．The driver who swerves gets -1 ．
The dilemma is that no one wants to be called chicken，but both drivers want to avoid a collision because a collision is the worst possible outcome．
$\xlongequal{\text { © }}$ Study the payoff table for the game of chicken．
What is the Nash equilibrium for the game of chicken？

Drivers can take route 1 or route 2 to get from point A to point B ． And drivers can travel either green road in 23 minutes and either red road in $10 \times n$ minutes where n is the number of cars on the road at that time．Let＇s assume that the two dtrivers have agreed to use different routes．
Then the mayor builds a super－speedy highway to improve traffic．It takes only 1 minute to drive the entire length of the new highway．

Now every driver has to decide whether to use the new highway chasing the red roads，or keep the initial strategy．Fill in the payoff table to show how long it would take each driver to get from A to B

Wolves can either cooperate and hunt as a pack or hunt alone．
If all wolves cooperate（hunt in a pack）， the pack is more likely to catch larger prey．

Scientists use the Prisoner＇s Dilemma to study cooperation and competition among animals．Why do some animals help each other while others do not？Scientists want to understand the impact on the group＇s survival．

The decision to get vaccinated is a dilemma． If the entire community gets vaccinated， there is a collective benefit of＂herd immunity．＂ However，an individual might choose not to get vaccinated to personally avoid side effects．

In this＂game＂，the doctor who does not prescribe antibiotics＂cooperates．＂The cooperator＇s payoff is negative，as if the medication did not exist． The payoff for the doctor who does prescribe the antibiotic（the＂defector＂）uniformly decreases with each additional prescription

If a doctor chooses a less aggressive strategy（short of avoiding antibiotics completely）they all benefit more．However，as each doctor focuses on her individual patients，the likelihood of a worse outcome for the overall population increases．

Game Theory was developed less than a hundred years ago．Yet people realized the impact of individual decision making on society long before that．Daniel Bernoulli commented in a paper he presented to the French Academy of Sciences in 1766，＂I simply wish that，in a matter which so closely concerns the wellbeing of the human race，no decision shall be made without all the knowledge which a little analysis and calculation can provide．＂

Which domino should be fifth in the row?

A
B

D | 0 | 0 |
| :--- | :--- |
| | \vdots |
| | 0 |

Rotate the die six times and get it to square 7 with 6 dots face up.

For example, with one move right, the die will be on square 6 with 5 dots face up.

Play with a friend! Roll two dice, add the two numbers that you roll, and find and mark your number on the board. If your number appears more than once, choose the circle that is better. If all the circles with your number are already marked, roll the dice again. Your goal is to mark four circles in a row, either horizontally, vertically, or diagonally.

FROM A JOURNAL FOUND ON A DESOLATE ISLAND

9 Went to the wreck, found the steersman's chest. It was broken and almost full of water and sand. I found nothing useful except for a set of games, March including an old chessboard in a thick well-worn leather case. As I had learned not to despair of anything, I took all the games to my hut

21 Traveled nearly four miles and found a lot of trees with differen - fruits, and I particularly rejoiced at the grapes upon the vines. March Thought a lot about my new chessboard.

22 Brought more planks. Today I decided that I could also 2 use irregular polygons on my board. Is not regularity March merely imposed upon us by society? I quieted my mind with this and started with triangles again.

Problem 3. Can you tile a plane with irregular triangles? (All the tiles should be the same shape and size.)
I went a-fishing and caught enough fish for several days. So I decided to play chess against myself and I was surprised March with the joy of it! Rained all day, and I stayed within. But I could not play chess any more. Man cannot beat himself at this game because March all his moves are immediately clear.

11-15

Worked on the wreck played chess.

17

 I resolved that I would build me a wall around my camp March In the a chessboard? Then might it perhaps become a better game?Problem 1. Other than squares, what regular polygons (all of the same size and shape) can tile a plane?

How strange a chequer-work of Providence is the life of man! It was so violently hot that 20. How strange a chequer-work of Providence is the life of man! It wat leave my cave and I thought of nothing but my misery. In the meantime, my huge March new chessboard is almost ready. Cannot determine how the knight and the bishop should move on the hexagonal board. Should I invent new pieces?

Problem 2. Can you tile a plane using regular polygons of two different types such as a triangle and a square? Find at least two possibilities.

1 and a traveled even farther inland and found a cove and a human skull next to the cove．I am not the first April human creature to set foot upon this ground！

2－5 Worked on the map of $m y$ island．

6 It is next to miraculous！I planned to use my aged leather case that contained the chess set． As I turned it inside out，I found a barely noticeable drawing that resembles my map．It is badly April worn and some details are missing，but I know that it is a map of my island because it has a cove and a grape grove．And a chest！

Problem 6．My map of the island is on the left．Can you mark the spot where the treasure chest should be？Use the worn and distorted map on the right to mark the location of the chest on the left． The grove and the cove have not moved．

But the next thing was a shovel or spade；this was so absolutely necessary，that indeed I could do nothing effectually without it；but what kind of one to make I knew not．So I went to the woods April and，with great labour，cut a piece of wood that in the Brazils they call the iron tree．

I worked that piece by little and little into the form of a shovel．Tomorrow will be the day！

This journal comes to an end at this point．The contents of the chest remain a significant mystery．Our sincere thanks are extended to Daniel Defoe for his generous assistance in the development of this text．

ANSWERS

Scalify－Magnify（p．6）
1） 3 large >20 small $\quad 3$ ）about 1.3 kg or 2.8 lb 2） 3 tubes \qquad 4） 10 times

Missing Pieces（p．10）

Hint：Think about how many marbles you need to do it． Solution：Suppose it is possible．Let＇s order the piles by the number of marbles they contain．Then the first pile has at least 1 marble，the second pile has at least 2 marbles， and so on．That makes the total number of marbles at least $1+2+3+\cdots+9=45$ ，but you only have 44 marbles So，it is not possible．

Challenge（p．12） 4） 36

6） 2
7） 7 squares 8）Wednesday

Beat the Offbeat Ogre（p．14）

With a d12，you have a $\frac{6}{12}=\frac{1}{2}$ chance of rolling a 7 or up． With 2 d 6 ，you have a $\frac{21}{36}=\frac{7}{12}$ chance which is greater than a $\frac{1}{2}$ chance of rolling a 7 or up．

MTwist（p．20）

1）$B \quad$ 2）

Die） 123456 $1^{2} 2^{3}{ }^{3}{ }^{5} 567$ \begin{tabular}{|l|l|l|l|l|l|}
\hline 2 \& 3 \& 4 \& 5 \& 6 \& 7

\hline

\hline 3 \& 4 \& 5 \& 6 \& 7 \& 8 \& 9

\hline 4 \& 5 \& 6 \& 7 \& 8 \& 9 \& 10

\hline \& 6 \& \& \& 9 \& 0

\hline 4 \& 5 \& 6 \& 7 \& 8 \& 9 \& 10

\hline 5 \& 6 \& 7 \& 8 \& 9 \& 10 \& 11

\hline 6 \& 7 \& 8 \& 9 \& 10 \& 11

\hline
\end{tabular} 6

Game of Trust（p．16） Game of Chicken：$(-1,1)$ and $(1,-1)$ One driver swerves，the other does not，and there is no reason for either to change his strategy． Traffic jam game：No driver will $\square \quad U_{\text {se }} \quad$ Don＇t benefit from an individual refusing to drive on the highway－and the trip time will increase for all traffic members．

	hwy	use hwy
Use hwy	41,41	31,43
Dent Duse ny	43,31	33,33

From a Journal Found

on a Desolate Island（p．22）
1）

2）

3）

4）

5）

雨

6）
而正：

Harvard-MIT Math Tournament (HMMT) 2023

Out of 137 Teams, RSM Placed:

th

Team Round

11
 th
 Guts Round \& the
 Sweepstakes Round

RSM Team A:

Luca Pieleanu, Rajarshi Mandal, Jefferson Ji, Kristiyan Kurtev, Arthur Liangchen Li, Andrew Kalashnikov

