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Abstract—1In this paper we study isometric representations of the semigroup Z\{1}. The notion
of inverse representation is introduced and a complete (to within unitary equivalence) description of
such representations of that semigroup is provided. A class of irreducible non-inverse representa-
tions (G-representations of the semigroup Z4 \{1}) is described.
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1. INTRODUCTION

In the paper [4] Coburn proved that all semiunitary representations of the semigroup of nonnegative
integers by isometric operators generate canonically isomorphic algebras. Later a similar result for
semigroups with archimedian order and total order have been proved by Douglas [5] and Murphy [7],
respectively. In [1] was proved that all non-unitary isometric representations of a semigroup S generate
canonically isomorphic C*-algebras if and only if the natural order on S is total. A simple example of
a semigroup with non-total order provides the semigroup Z,\{1}, which originally was discussed by
Murphy [7]. Later, Jang [6] pointed out two representations of this semigroup that generate canonically
non-isomorphic C*-algebras. Raeburn and Vittadello [9] studied all isometric representations of the
semigroup Z \{1} under certain condition.

The present paper is devoted to the isometric representations of the semigroup Z\{1}. Here the
term isometric representation stands for a representation by isometric (more precisely, semiunitary)
operators in a Hilbert space. We introduce a notion of inverse representation and show that there
exist only two inverse irreducible representations (to within unitary equivalence), which are the same
representations as in [6], [7], [9], [10]. We also study non-inverse representations of the semigroup

Z\{1}.

2. INVERSE REPRESENTATIONS

Throughout the paper S will stand for an abelian additive cancelative semigroup containing the
neutral element 0 and not containing a group different from trivial. By I" we denote the Grothendieck
group generated by the semigroup S. Recall that the group I' is a quotient of the semigroup S x .S with
respect to equivalence (a,b) ~ (c,d) if and only if a + d = b+ ¢, and the inverse of the quotient class
[(a,b)] is [(b,a)]. The notation " = S — S is commonly used.

Let T': S — B(Hr) be the faithful non-unitary isometric representation of the semigroup S into
algebra B(Hr) of all bounded linear operators on the Hilbert space Hr. Observe that in this case
T(0) =1.

Forany a € S by T*(a) we denote the conjugate of the operator T'(a). We have T*(a)T'(a) = I, where
I is the identity operator, and T'(a)T™*(a) = Pr(a), where Pr(a) is the projection (Pr(a) # I).
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ON ISOMETRIC REPRESENTATIONS OF THE SEMIGROUP 79

LetT : S — B(Hr) be an isometric representation of the semigroup S. An element hg € Hr we call
initial for the operator T'(a) if T*(a)ho = 0 for any a € S\{0} and ||ho|| = 1.

The operators T'(a) and T*(b), a,b € S, we call trivial monomials. A monomial is defined to be a
finite product of trivial monomials. The set of all monomials forms a multiplicative involutive semigroup,
which we will denote by S7.. On the semigroup S we define the order: @ < bif b = a 4 c. Note that S'is a
net with respect to this order.

Lemma 2.1. for any monomial V there exist x and y in S such that
linég T*(e)VT(c) =T (z)T(y),
ce

where limcg is the limit by the net S.

Proof. Let V be a monomial represented as follows
V=]][7(a),
i=1
where T"(a;) is either T'(a;) or T*(a;). We split the set {a;}7_; into two subsets: {a;, }%_, and {ai, Yoy
The first subset consists of those {a;}" ; for which the monomial V" involves the operator T'(a;), while
for the second V' involves the operator T*(a;). Let

Using the equalities T*(s)T'(s) = I and T'(s)T'(t) = T'(t)T'(s) for any s,t € S we have
T*(c)VT(c) =T(a)T(b),
where ¢ = a + b. Therefore forany d, ¢ < d
T*(d)VT(d) =T*(a)T(b) = Een;T*(c)VT(c),

and the result follows.

Observe that if 7%(a)T'(b) = T*(c)T'(d) for some a, b, c and d from S, then due to faithfulness of the
representation we have b 4+ ¢ = a + d. This implies that to each monomial V' can be correspond a unique
element b — a from the Grothendieck group I'. The element b — a we call an index of the monomial V'
and denote by ind(V') = b — a. This notion was introduced in [2] for regular representation of semigroup

Lemma 2.2. The following assertions hold:
1. Theindex of a monomial does not depend on its representation by elementary monomials.

2. Theindex of a product of monomials is equal to the sum of indices of factors:
ind(Vy - Vo) = ind(V1) + ind(V2).

Denote by Sj 1 the subsemigroup of the semigroup S7. consisting of those V for which ind(V) = 0.

An isometric representation 7' : S — B(Hr) is called inverse representation if Sj. is an inverse
semigroup with respect to multiplication and involution, or equivalently, if S§, is a semigroup of
idempotents in S7. (i.e., a semigroup of orthogonal projections). According to lemma 2.2 from [2] each
semigroup S possesses at least one inverse representation. On the other hand, as it was shown in[1], if
the above defined order on S is a total order, then all the isometric representations of .S are inverse.

A simple example of inverse representation is the representation L : Z, — B(I?(Z.)) by the shift op-
erator L(n)en, = €ptm, Where e, (m) = 6, is the Kronecker symbol. Notice that the system {e,,(m)}
forms an orthonormal basis in [?(Z. ), and in this case, the semigroup Z % is a bicyclic semigroup.
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3. INVERESE REPRESENTATIONS OF THE SEMIGROUP Z,\{1}

Below we use the notation M = Z\{1}. Murphy [7], and then Jang [6], have proved that there exist
at least two isometric representations of the semigroup M that generate canonically non-isomorphic
C*-algebras. In [9] were studied isometric representations 7" of the semigroup M, when the projections
T(n)T*(n) and T'(m)T™*(m) commute for any n,m € M. It follows from the results of this section that
T is an inverse representation. Here, in fact, we obtain the same results as in [9], but now their proofs
are based on the notion of initial element. This section is included for completeness of presentation of
the topic.

Consider two isometric representations of the semigroup M:
T, : M — B(I*(M)), To:M — B(*(Z,)),

determined by the shiit operators Ti(m)e, = epipn and To(m)fy, = fin, Where {e,}nen and
{fn}nez, are the natural orthonormal bases in [(M) and (*(Z4.), respectively. In [7] and [6] it was
shown that these representations are not unitary equivalent.

The representations Ty and T3 generate inverse semigroups My, and Mz, . The representation 71 is
inverse because it is regular (see [1], [2]), while Tp is inverse because 7§ (2)Tp(3) is a shift operator on
12(Z..) transferring the basis elements e,, into e,,41. It is clear that (T (2)T0(3))™ = To(n), where n > 2.
Observe that M7, is a bicyclic semigroup with a generator 75 (2)70(3).

Below we show that each inverse faithiul isometric irreducible representation of the semigroup M is
unitary equivalent to either Ty or T7. Let T be an irreducible isometric representation of semigroup M.

Lemma 3.1. Forany n > 2 the equality holds:
T*n)T(n+1)=T"(n+ 1)T(n+ 2).

Proof. 1t follows from the equality T*(m)T (m) = I that
T*n)T(n+1)=T"n)T*B)TB3)T(n+1)=T*(n+3)T(n+4)

=T"(n+1)T"(2)T(2)T(n+2) =T"(n+ 1)T'(n +2),
yielding the result.
Corollary 3.1. Foralll,n,m € M we have
T*(n)T(m) =T"(n+1)T(m+1).
Below we use the following elementary identities:
T°(2) =T*B)T*(2)T(3), T°(3) = T ()T (T 3), T*(3)T(2) = T*(2)T*(2)T(3),
which imply: if hg € ker T%(2)T(3), then
T*(2)T'(3)ho = T (2)ho = T*(3)ho = T*(3)T'(2)ho = 0.

Lemma 3.2. Let T : M — B(H) be an irreducible representation, and let ker T*(2)T(3) # 0. Then
T is inverse and is unitary equivalent to the representation Ty.

Proof. We fix hg € ker T*(2)T'(3) to satisfy ||ho|| = 1. Denote by Hy the Hilbert subspace in H,
generated by the linear combinations of the elements of the set {h, }nenr, where h,, = T'(n)hg. It is
clear that ||h,|| = 1.

We show that Hy = H. Observe first that since 7'(n)Hy C Hy it is enough to show that T*(n)h,,
belongs to Hy for all n € M. The above equalities imply

T*(2)ho =0, T*(2)hs = T*(2)T(3)ho = 0,
T*(3)ho = 0, T*(3)he = T*(2)T*(2)T(3)ho = 0,
T*(3)hy = T*(3)T(4)ho = T*(2)T(3)ho = 0.

JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS Vol. 48 No.2 2013



ON ISOMETRIC REPRESENTATIONS OF THE SEMIGROUP 81

Now, taking into account that if n € M\{0; 3}, then n — 2 also belongs to M, we obtain
T*(2)hy, =T*(2)T(2)hp—2 = hp—a.
Similarly T7%(3)hy, = hpm—3 form € M\{0,2,4}.
Let now m be an arbitrary number from M. Then m = 31 + 2k, T*(m) = T*(3)'T*(2)*. Therefore
either T"(m)hy, = 0 or T*(m)h,, = hp—pm, implying that Hy = H.
Next, we show that the set {h,, }ens forms an orthonormal basis in Hy. Let n,m € M and n > m.
Assuming that n — m # 1, we have

(A, hy) = (T (n — m)hg, hg) = 0.
[fn=m+1, then T*(m)T'(n) = T*(2)T(3) and (A, hyn) = (ho, T*(2)T(3)ho) = 0. Finally, we intro-
duce the operator U : Hy — I2(M), Uh,, = e, and observe that U*T{U = T This completes the proof.
Lemma3.3. Let T : M — B(H) be an inverse representation. Then
P=T*3)T(2)T*(2)T(3) and Q =T*(2)T(3)T*(3)T(2)

are projections and @ < P.

Proof. 1t is easy to check that P and @ are projections. So, we prove that @ < P. Using Lemma 3.1 and
the equalities
T)T*TR)T*(3) =TR)T ()T (2)T*(2), T"(2)T(4) =T(2),
we can write
PQ=T"3)T(2)T*(2)T(3)T*(2)T(3)T*(3)T(2)

= T*(3)T(2)T* (2)T(3)T* (3)T(4)T*(3)T(2)
=T*B)TE)T*B)T2)T* )T ()T 3)T(2) =T*3)T(2)T"(2)T(2)T(2)T*(3)T'(2)

=T*"B)T2)T2)T"B3)T(2) =T*B)TA)T*(3)T(2) =T*2)TB)T*3)T'(2) = Q,
and the result follows.

Lemma 3.4. Let T be a non-unitary isometric representation of the semigroup M. Then there
exists an element which is initial for any operator T'(n).

Proof. Denote Hy = ker T*(2). It is clear that 7%(3) : Hy — Hs. Indeed,

T*(2)T*(3)Hy = T*(3)T*(2)Hy = 0.
Thus, two cases are possible: either T*(3)Hy = {0} or T*(3)Hy # {0}. In the first case as an initial
element can be taken any element from Hs. As for the second case, we fix a non-zero element hy € Ho,

then hg = T*(3)ha||T*(3)ha||~! will be an initial element because we can apply to hg the operator 7*(3)
and T*(6) = T*(2)T*(2)T*(2). The proof is complete.

Lemma 3.5. Let T : M — B(H) be an irreducible non-unitary inverse representation of M, and
let ker T*(2)T'(3) = {0}. Then T is unitary equivalent to the representation Ty.

Proof. 1t follows from the condition ker 7%(2)T'(3) = {0} that P =TI is an identity operator and
T*(2)T(3) is an isometry. We show that T7*(2)T(3) is a non-unitary operator. Indeed, according to
Lemma 3.1 we have

T*(2)T3)T*(2)T(3) =T*(2)T3)T*(3)T(4) =T*(2)T(3)T*(3)T(2)T(2) = QT (2).
The operator QT'(2) is non-unitary because it is a product of a projection and an isometric operator.
Hence T7%(2)7'(3) is also a non-unitary isometric operator. By the Wold-von Neumann decomposition

theorem (see, e.g., [8]) the isometric operator 7*(2)7T'(3) can be represented as a direct sum of a shiit
operator and a unitary operator. Let hg € H be an initial element for the operator 7%(2)7'(3).
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We set h,, = (T*(2)T'(3))"hg. Since P = I, we have ||h,|| =1 and (hy,, hy,) = 0 for n # m, that
is, {hn}2% is an orthonormal system in H. It follows from the equalities 1 = ||ha|| = ||QT(2)ho|| and
[|T(2)ho|| = 1 that QT'(2)ho = T'(2)ho, that is, he = T'(2)ho. Similarly we obtain

hs = (T*(2)T(3))T(2)ho = T(3)ho.
Continuing this process we get h,, = T'(n)hg. Thus, a Hilbert subspace Hy of H for which the system
{hn}72 forms an orthonormal basis is invariant for the shift operator 7%(2)T'(3) and on Hy we have
(T*(2)T(3))" =T(n),n € M. Hence Hy = H and the unitary operator
U:Hy—1*Zy), Uh,=ep,

is an intertwining operator, that is, U*ToU = T'. This completes the proof.
From Lemmas 3.2 and 3.5 we obtain the following results.

Theorem 3.1. Let T be a non-unitary inverse representation of the semigroup M. Then T is
unitary equivalent to either Ty or T}.

Theorem 3.2. Each isometric inverse representation T of the semigroup M can be represented as
a direct sum

T=Fkly®lTh &1,

where k and | are the multiplicities of the representations Ty and Ty, respectively, and Ty is a
unitary representation of the semigroup M.

Remark 3.1. It can be shown that for any isometric representation 7" of the semigroup M the in-
verseness of the semigroup M7 is equivalent to the commutativity of elementary projections Pr(n) =
T(n)T*(n), n € M. Thefollowing question is of interest: do the notions of inverseness and permutability
of the elementary projections for an isometric representation of a general semigroup equivalent?

4. B-REPRESENTATION OF THE SEMIGROUP M

[t follows from Coburn’s theorem [4] that there is only one (to within unitary equivalence) infinite
irreducible representation of the semigroup Z,. In this section we prove that for the “deformed”
semigroup M the number of such representations is continuum.

Let Hy be a Hilbert subspace of the space 1?(Z) generated by the basis {e,}5%,, en(m) = 6pm.
Denote by Hg the Hilbert subspace of (?(Z) generated by the elements from Hy and the element
gs = Beo + ter, where 3 € C,t € Ry and 32 + 1% = 1. It is clear that the family {gg, {en}% 5} forms
an orthonormal basis in Hg and Hg = Cgg ® Hy.

Let Pg:1?(Z+) — Hg be the orthogonal projection from {*(Z,.) onto Hg. Define the representa-
tion 75 : M — B(Hpg): 73(n) = P3Tp(n)Pg, where Ty : M — B(1%(Z4.)) is the inverse representation
defined above. Since Ty(n) maps Hpg onto itsell, the representation 753 : M — B(Hpg) is an isometric
representation of the semigroup M.

Lemma4.1. The representation 75 : M — B(Hg) is an inverse representation if and only if either

B=0or|B =1.

Proof. 1 3 =0, then gy = e and Hy = [?(N). Hence the representation 79 : M — B(I?(N) is unitary
equivalent to representation Ty.

[T |8] = 1, then gg = Beg and Hg = [*(M), and in this case the representation 753 : M — B(I*(M))
is unitary equivalent to representation 77.

Now assuming 0 < [3] < 1, we show that the operator 75(3)73(2)75(2)75(3) is not a projection.
We first evaluate 75(2)73(3) on basis elements gg and ey, of the space Hg. We have 73(2)73(3)e, =
ént+1, N =2,3,..., that is, 75(2)7-5(3) is an one-sided shift operator on Hy. Hence the contraction of
75(3)75(2)75(2)75(3) on Hy is an identity operator. We have

(75(2)75(3)gs, 95) = (15(3)g5,78(2)98) = Bt,
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(75(2)75(3)gp, e2) = (15(3)gp,€a) = t, (75(2)75(3)gp,en) =0 forn > 3.
Hence 75(2)73(3)gs = Btgp + tea, implying

Tﬁ(2)(ﬂtgﬁ + teg) = Bt(ﬂeg + teg) + tey.
Now we evaluate 7j3(3)es, 73(3)es and 75(3)es. It is clear that

(T5(3)e2,958) = 0= (15(3)e2, en), n > 2,
implying 75(3)ez = 0. Next, we have
(75(3)es, en) = (T™(3)es, e,) = Oforalln =2,3,..., and

(75(3)63795) = (637663 + t€4) = Ba (75(3)64795) = (647663 + t€4) =t.
Hence 75(3)es = Bys, 75(3)es = tgg. Thus, we have

5(3)75(2)75(2)75(3)g5 = (164> + t*)gp.
It follows from 0 < || < 1and |32 +¢? = 1that |3]*¢? +t? < 1. Hence the operator 773(3)75(2)753(2)75(3)

is a diagonal operator with respect to basis gg, e, e3, . .. with eigenvalues 3|22 + ¢? and 1. Since this
operator is not a projection, we conclude that M7 is not an inverse semigroup. The proof is completed.

Theorem 4.1. The following assertions hold:

1. The representation 1g of the semigroup M is irreducible and isometric.
2. If 1 # B2 and |1| < 1, then the representations T, and T, are unitary equivalent.

Proof. (1) Observe first that if | 3|?#2 + ¢? = 1, then 3 = 0. Hence in this case we obtain a representation
7o which, as it was mentioned above, is not only irreducible and isometric but also inverse. For
|812t2 + 2 # 1 we set

1
1 |gpe -
and observe that Q3 is a projection onto the one-dimensional space Cgg, while
Ag = (I —Qp)73(2)75(3)(I — Qp) is an one-sided shift operator on Hy which vanishes on gg, that is,
Aggs =0, Agey, = enq1 forn = 2,3,.... Therefore the C*-algebra generated by the operator Ag is a
Toeplitz algebra on Hy containing all the compact operators from (1 — Qg)B(Hg)(1 — Qg). Therefore
each invariant subspace of C*-algebra generated by the representation 73 either contains Hy or is
orthogonal to Hy. To complete the proof of assertion (1), it remains to observe that since Hg = Cgg @ Hy
and 73(2)gg € Hy, the representation 7 is irreducible.
(2) Let 73, ~ 73, and 0 < |B1]| < 1. We show that 8y = (5. Let U : Hg, — Hpg, be a unitary operator
such that 73, = UTp,U™. Since each element from Hpg, on which the operators 77 (2) and 75 (3) vanish
is a multiple of the element gg,, i = 1,2, the unitary operator U : Hg, — Hp, transfers the space Cgg,
on Cgg,, that is, Ugg, = ei(’ggQ, 0 < 6 < 27. Next, since V = e~U is a unitary operator, we have
78, = V'13,V* and Vgg, = gg,. Therefore

Pity = (7—51 (2)7-/81 (3)951,%1) = (TEQ (2)7—& (3)gﬂ27952) = foty,

and |61 [*t7 + 7 = |Ba*t3 + 13 are the eigenvalues of the operator 77 (3)75,(2)75,(2)75,(3) on the vector
93;, © = 1,2. This implies 31 = B2. The proof is complete.

The following questions that arise naturally are of interest. To describe the class of all irreducible
isometric representations of the semigroup M. Do all the irreducible isometric infinite representations of
the semigroup M unitary equivalent to some representation 75 : M — B(Hp)?

The author would like to thank Professor S. A. Grigoryan for supervising this research, and Professor
V. A. Arzumanyan for reading the manuscript and for a number of helpful comments, which improved
the presentation of the material.

Qp = c(I —75(3)75(2)75(2)75(3)), where ¢ =
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