= OPERATOR ALGEBRAS =

On Isometric Representations of the Semigroup $\mathbb{Z}_+ \backslash \{1\}$

V. H. Tepoyan*

1Kazan State Power Engineering University, Kazan, Russia Received August 22, 2011

Abstract—In this paper we study isometric representations of the semigroup $\mathbb{Z}_+\setminus\{1\}$. The notion of inverse representation is introduced and a complete (to within unitary equivalence) description of such representations of that semigroup is provided. A class of irreducible non-inverse representations (β -representations of the semigroup $\mathbb{Z}_+\backslash\{1\}$) is described.

MSC2010 numbers : 46L05, 20M18

DOI: 10.3103/S1068362313020040

Keywords: *Invariant semigroup; inverse representation;* C[∗]*-algebras; regular representation;* β*-representation.*

1. INTRODUCTION

In the paper [4] Coburn proved that all semiunitary representations of the semigroup of nonnegative integers by isometric operators generate canonically isomorphic algebras. Later a similar result for semigroups with archimedian order and total order have been proved by Douglas [5] and Murphy [7], respectively. In $[1]$ was proved that all non-unitary isometric representations of a semigroup S generate canonically isomorphic C^* -algebras if and only if the natural order on S is total. A simple example of a semigroup with non-total order provides the semigroup $\mathbb{Z}_+\backslash\{1\}$, which originally was discussed by Murphy [7]. Later, Jang [6] pointed out two representations of this semigroup that generate canonically non-isomorphic C^{*}-algebras. Raeburn and Vittadello [9] studied all isometric representations of the semigroup $\mathbb{Z}_+ \backslash \{1\}$ under certain condition.

The present paper is devoted to the isometric representations of the semigroup $\mathbb{Z}_+\backslash\{1\}$. Here the term *isometric representation* stands for a representation by isometric (more precisely, semiunitary) operators in a Hilbert space. We introduce a notion of inverse representation and show that there exist only two inverse irreducible representations (to within unitary equivalence), which are the same representations as in [6], [7], [9], [10]. We also study non-inverse representations of the semigroup $\mathbb{Z}_+\backslash \{1\}.$

2. INVERSE REPRESENTATIONS

Throughout the paper S will stand for an abelian additive cancelative semigroup containing the neutral element 0 and not containing a group different from trivial. By Γ we denote the Grothendieck group generated by the semigroup S. Recall that the group Γ is a quotient of the semigroup $S \times S$ with respect to equivalence $(a,b) \sim (c,d)$ if and only if $a + d = b + c$, and the inverse of the quotient class $[(a,b)]$ is $[(b,a)]$. The notation $\Gamma = S - S$ is commonly used.

Let $T: S \to B(H_T)$ be the *faithful non-unitary isometric* representation of the semigroup S into algebra $B(H_T)$ of all bounded linear operators on the Hilbert space H_T . Observe that in this case $T(0) = I.$

For any $a \in S$ by $T^*(a)$ we denote the conjugate of the operator $T(a)$. We have $T^*(a)T(a) = I$, where *I* is the identity operator, and $T(a)T^*(a) = P_T(a)$, where $P_T(a)$ is the projection $(P_T(a) \neq I)$.

^{*} E-mail: tepoyan.math@gmail.com

Let $T: S \to B(H_T)$ be an isometric representation of the semigroup S. An element $h_0 \in H_T$ we call *initial* for the operator $T(a)$ if $T^*(a)h_0 = 0$ for any $a \in S \setminus \{0\}$ and $||h_0|| = 1$.

The operators $T(a)$ and $T^*(b)$, $a, b \in S$, we call *trivial monomials*. A *monomial* is defined to be a finite product of trivial monomials. The set of all monomials forms a multiplicative involutive semigroup, which we will denote by S_T^* . On the semigroup S we define the order: $a \prec b$ if $b = a + c$. Note that S is a net with respect to this order.

Lemma 2.1. *For any monomial* V *there exist* x *and* y *in* S *such that*

$$
\lim_{c \in S} T^*(c)VT(c) = T^*(x)T(y),
$$

where $\lim_{c \in S}$ *is the limit by the net S*.

Proof. Let V be a monomial represented as follows

$$
V = \prod_{i=1}^{n} T'(a_i),
$$

where $T'(a_i)$ is either $T(a_i)$ or $T^*(a_i)$. We split the set $\{a_i\}_{i=1}^n$ into two subsets: $\{a_{i_k}\}_{k=1}^k$ and $\{a_{i_j}\}_{j=l+1}^n$. The first subset consists of those $\{a_i\}_{i=1}^n$ for which the monomial V involves the operator $T(a_i)$, while for the second V involves the operator $T^*(a_i)$. Let

$$
a = \sum_{j=l+1}^{n} a_{i_j}, \ b = \sum_{k=1}^{l} a_{i_k}.
$$

Using the equalities $T^*(s)T(s) = I$ and $T(s)T(t) = T(t)T(s)$ for any $s, t \in S$ we have

$$
T^*(c)VT(c) = T^*(a)T(b),
$$

where $c = a + b$. Therefore for any $d, c \prec d$

$$
T^*(d)VT(d) = T^*(a)T(b) = \lim_{c \in S} T^*(c)VT(c),
$$

and the result follows.

Observe that if $T^*(a)T(b) = T^*(c)T(d)$ for some a, b, c and d from S, then due to faithfulness of the representation we have $b + c = a + d$. This implies that to each monomial V can be correspond a unique element $b - a$ from the Grothendieck group Γ. The element $b - a$ we call an *index* of the monomial V and denote by $\text{ind}(V) = b - a$. This notion was introduced in [2] for regular representation of semigroup S.

Lemma 2.2. *The following assertions hold:*

- *1. The index of a monomial does not depend on its representation by elementary monomials.*
- *2. The index of a product of monomials is equal to the sum of indices of factors:*

$$
ind(V_1 \cdot V_2) = ind(V_1) + ind(V_2).
$$

Denote by $S_{0,T}^*$ the subsemigroup of the semigroup S_T^* consisting of those V for which ind $(V) = 0$.

An isometric representation $T : S \to B(H_T)$ is called *inverse representation* if S_T^* is an inverse semigroup with respect to multiplication and involution, or equivalently, if $S_{0,T}^*$ is a semigroup of idempotents in S^*_T (i.e., a semigroup of orthogonal projections). According to lemma 2.2 from [2] each semigroup S possesses at least one inverse representation. On the other hand, as it was shown in [1], if the above defined order on S is a total order, then all the isometric representations of S are inverse.

A simple example of inverse representation is the representation $L: \mathbb{Z}_+ \to B(l^2(\mathbb{Z}_+))$ by the shift operator $L(n)e_m = e_{n+m}$, where $e_n(m) = \delta_{n,m}$ is the Kronecker symbol. Notice that the system $\{e_n(m)\}$ forms an orthonormal basis in $l^2(\mathbb{Z}_+)$, and in this case, the semigroup \mathbb{Z}_{+L}^* is a bicyclic semigroup.

80 TEPOYAN

3. INVERESE REPRESENTATIONS OF THE SEMIGROUP $\mathbb{Z}_+\backslash\{1\}$

Below we use the notation $M = \mathbb{Z}_+ \setminus \{1\}$. Murphy [7], and then Jang [6], have proved that there exist at least two isometric representations of the semigroup M that generate canonically non-isomorphic C^* -algebras. In [9] were studied isometric representations T of the semigroup M, when the projections $T(n)T^*(n)$ and $T(m)T^*(m)$ commute for any $n,m \in M$. It follows from the results of this section that T is an inverse representation. Here, in fact, we obtain the same results as in [9], but now their proofs are based on the notion of *initial element*. This section is included for completeness of presentation of the topic.

Consider two isometric representations of the semigroup M:

$$
T_1: M \to B(l^2(M)), T_0: M \to B(l^2(\mathbb{Z}_+)),
$$

determined by the shift operators $T_1(m)e_n = e_{m+n}$ and $T_0(m)f_n = f_{m+n}$, where $\{e_n\}_{n \in M}$ and $\{f_n\}_{n\in\mathbb{Z}_+}$ are the natural orthonormal bases in $l^2(M)$ and $l^2(\mathbb{Z}_+)$, respectively. In [7] and [6] it was shown that these representations are not unitary equivalent.

The representations T_0 and T_1 generate inverse semigroups $M^\ast_{T_0}$ and $M^\ast_{T_1}.$ The representation T_1 is inverse because it is regular (see [1], [2]), while T_0 is inverse because $T_0^*(2)\bar{T}_0(3)$ is a shift operator on $l^2(\mathbb{Z}_+)$ transferring the basis elements e_n into e_{n+1} . It is clear that $(T^*_0(2)T_0(3))^n=T_0(n)$, where $n\geq 2$. Observe that $M_{T_0}^*$ is a bicyclic semigroup with a generator $T_0^*(2)T_0(3)$.

Below we show that each inverse faithful isometric irreducible representation of the semigroup M is unitary equivalent to either T_0 or T_1 . Let T be an irreducible isometric representation of semigroup M.

Lemma 3.1. *For any* $n \geq 2$ *the equality holds:*

$$
T^*(n)T(n+1) = T^*(n+1)T(n+2).
$$

Proof. It follows from the equality $T^*(m)T(m) = I$ that

$$
T^*(n)T(n+1) = T^*(n)T^*(3)T(3)T(n+1) = T^*(n+3)T(n+4)
$$

=
$$
T^*(n+1)T^*(2)T(2)T(n+2) = T^*(n+1)T(n+2),
$$

yielding the result.

Corollary 3.1. *For all* $l, n, m \in M$ *we have*

$$
T^*(n)T(m) = T^*(n+l)T(m+l).
$$

Below we use the following elementary identities:

$$
T^*(2) = T^*(3)T^*(2)T(3), \ T^*(3) = T^*(4)T^*(2)T(3), \ T^*(3)T(2) = T^*(2)T^*(2)T(3),
$$

which imply: if $h_0 \in \text{ker } T^*(2)T(3)$, then

$$
T^*(2)T(3)h_0 = T^*(2)h_0 = T^*(3)h_0 = T^*(3)T(2)h_0 = 0.
$$

Lemma 3.2. *Let* $T : M \to B(H)$ *be an irreducible representation, and let* ker $T^*(2)T(3) \neq 0$ *. Then* T is inverse and is unitary equivalent to the representation T_1 .

Proof. We fix $h_0 \in \text{ker } T^*(2)T(3)$ to satisfy $||h_0|| = 1$. Denote by H_0 the Hilbert subspace in H, generated by the linear combinations of the elements of the set $\{h_n\}_{n\in M}$, where $h_n = T(n)h_0$. It is clear that $||h_n|| = 1$.

We show that $H_0 = H$. Observe first that since $T(n)H_0 \subset H_0$ it is enough to show that $T^*(n)h_m$ belongs to H_0 for all $n \in M$. The above equalities imply

$$
T^*(2)h_0 = 0, \quad T^*(2)h_3 = T^*(2)T(3)h_0 = 0,
$$

$$
T^*(3)h_0 = 0, \quad T^*(3)h_2 = T^*(2)T^*(2)T(3)h_0 = 0,
$$

$$
T^*(3)h_4 = T^*(3)T(4)h_0 = T^*(2)T(3)h_0 = 0.
$$

Now, taking into account that if $n \in M \setminus \{0, 3\}$, then $n-2$ also belongs to M, we obtain

$$
T^*(2)h_n = T^*(2)T(2)h_{n-2} = h_{n-2}.
$$

Similarly $T^*(3)h_m = h_{m-3}$ for $m \in M \setminus \{0, 2, 4\}.$

Let now m be an arbitrary number from M. Then $m = 3l + 2k$, $T^*(m) = T^*(3)^lT^*(2)^k$. Therefore either $T^*(m)h_n = 0$ or $T^*(m)h_n = h_{n-m}$, implying that $H_0 = H$.

Next, we show that the set $\{h_n\}_{n\in M}$ forms an orthonormal basis in H_0 . Let $n,m\in M$ and $n>m$. Assuming that $n - m \neq 1$, we have

$$
(h_m, h_n) = (T^*(n-m)h_0, h_0) = 0.
$$

If $n = m + 1$, then $T^*(m)T(n) = T^*(2)T(3)$ and $(h_m, h_n) = (h_0, T^*(2)T(3)h_0) = 0$. Finally, we introduce the operator $U: H_0 \to l^2(M)$, $Uh_n = e_n$, and observe that $U^*T_1U = T$. This completes the proof.

Lemma 3.3. *Let* $T : M \to B(H)$ *be an inverse representation. Then*

$$
P = T^*(3)T(2)T^*(2)T(3) \text{ and } Q = T^*(2)T(3)T^*(3)T(2)
$$

are projections and $Q < P$ *.*

Proof. It is easy to check that P and Q are projections. So, we prove that $Q < P$. Using Lemma 3.1 and the equalities

$$
T(2)T^*(2)T(3)T^*(3) = T(3)T^*(3)T(2)T^*(2), T^*(2)T(4) = T(2),
$$

we can write

$$
PQ = T^*(3)T(2)T^*(2)T(3)T^*(2)T(3)T^*(3)T(2)
$$

= T^*(3)T(2)T^*(2)T(3)T^*(3)T(4)T^*(3)T(2)

 $=T^*(3)T(3)T^*(3)T(2)T^*(2)T(4)T^*(3)T(2) = T^*(3)T(2)T^*(2)T(2)T(2)T^*(3)T(2)$

$$
=T^*(3)T(2)T(2)T^*(3)T(2) = T^*(3)T(4)T^*(3)T(2) = T^*(2)T(3)T^*(3)T(2) = Q,
$$

and the result follows.

Lemma 3.4. *Let* T *be a non-unitary isometric representation of the semigroup* M*. Then there exists an element which is initial for any operator* $T(n)$ *.*

Proof. Denote $H_2 = \ker T^*(2)$. It is clear that $T^*(3) : H_2 \to H_2$. Indeed,

 $T^{*}(2)T^{*}(3)H_{2} = T^{*}(3)T^{*}(2)H_{2} = 0.$

Thus, two cases are possible: either $T^*(3)H_2 = \{0\}$ or $T^*(3)H_2 \neq \{0\}$. In the first case as an initial element can be taken any element from H_2 . As for the second case, we fix a non-zero element $h_2 \in H_2$, then $h_0 = T^*(3)h_2||T^*(3)h_2||^{-1}$ will be an initial element because we can apply to h_0 the operator $T^*(3)$ and $T^{*}(6) = T^{*}(2)T^{*}(2)T^{*}(2)$. The proof is complete.

Lemma 3.5. Let $T : M \to B(H)$ be an irreducible non-unitary inverse representation of M, and *let* ker $T^*(2)T(3) = \{0\}$. Then T is unitary equivalent to the representation T_0 .

Proof. It follows from the condition ker $T^*(2)T(3) = \{0\}$ that $P = I$ is an identity operator and $T[*](2)T(3)$ is an isometry. We show that $T[*](2)T(3)$ is a non-unitary operator. Indeed, according to Lemma 3.1 we have

$$
T^{*}(2)T(3)T^{*}(2)T(3) = T^{*}(2)T(3)T^{*}(3)T(4) = T^{*}(2)T(3)T^{*}(3)T(2)T(2) = QT(2).
$$

The operator $QT(2)$ is non-unitary because it is a product of a projection and an isometric operator. Hence $T[*](2)T(3)$ is also a non-unitary isometric operator. By the Wold-von Neumann decomposition theorem (see, e.g., [8]) the isometric operator $T^*(2)T(3)$ can be represented as a direct sum of a shift operator and a unitary operator. Let $h_0 \in H$ be an initial element for the operator $T^*(2)T(3)$.

JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS Vol. 48 No. 2 2013

82 TEPOYAN

We set $h_n = (T^*(2)T(3))^n h_0$. Since $P = I$, we have $||h_n|| = 1$ and $(h_n, h_m) = 0$ for $n \neq m$, that is, $\{h_n\}_{n=0}^\infty$ is an orthonormal system in $H.$ It follows from the equalities $1=||h_2||=||QT(2)h_0||$ and $||T(2)h_0|| = 1$ that $QT(2)h_0 = T(2)h_0$, that is, $h_2 = T(2)h_0$. Similarly we obtain

$$
h_3 = (T^*(2)T(3))T(2)h_0 = T(3)h_0.
$$

Continuing this process we get $h_n = T(n)h_0$. Thus, a Hilbert subspace H_0 of H for which the system ${h_n}_{n=0}^{\infty}$ forms an orthonormal basis is invariant for the shift operator $T^*(2)T(3)$ and on H_0 we have $(T^*(2)T(3))^n = T(n)$, $n \in M$. Hence $H_0 = H$ and the unitary operator

$$
U: H_0 \to l^2(\mathbb{Z}_+), \quad Uh_n = e_n,
$$

is an intertwining operator, that is, $U^*T_0U = T$. This completes the proof.

From Lemmas 3.2 and 3.5 we obtain the following results.

Theorem 3.1. *Let* T *be a non-unitary inverse representation of the semigroup* M*. Then* T *is unitary equivalent to either* T_0 *or* T_1 *.*

Theorem 3.2. *Each isometric inverse representation* T *of the semigroup* M *can be represented as a direct sum*

$$
T = kT_0 \oplus lT_1 \oplus T_2,
$$

where k and l are the multiplicities of the representations T_0 and T_1 , respectively, and T_2 is a *unitary representation of the semigroup* M*.*

Remark 3.1. It can be shown that for any isometric representation T of the semigroup M the inverseness of the semigroup M_T^* is equivalent to the commutativity of *elementary projections* $P_T(n) =$ $T(n)T^*(n)$, $n \in M$. The following question is of interest: do the notions of inverseness and permutability of the elementary projections for an isometric representation of a general semigroup equivalent?

4. β-REPRESENTATION OF THE SEMIGROUP M

It follows from Coburn's theorem [4] that there is only one (to within unitary equivalence) infinite irreducible representation of the semigroup \mathbb{Z}_+ . In this section we prove that for the "deformed" semigroup M the number of such representations is continuum.

Let H_0 be a Hilbert subspace of the space $l^2(\mathbb{Z}_+)$ generated by the basis $\{e_n\}_{n=2}^{\infty}$, $e_n(m) = \delta_{n,m}$. Denote by H_β the Hilbert subspace of $l^2(\mathbb{Z}_+)$ generated by the elements from H_0 and the element $g_{\beta} = \beta e_0 + t e_1$, where $\beta \in \mathbb{C}$, $t \in \mathbb{R}_+$ and $\beta^2 + t^2 = 1$. It is clear that the family $\{g_{\beta}, \{e_n\}_{n=2}^{\infty}\}$ forms an orthonormal basis in H_β and $H_\beta = \mathbb{C} g_\beta \oplus H_0$.

Let $P_\beta: l^2(\mathbb{Z}_+) \to H_\beta$ be the orthogonal projection from $l^2(\mathbb{Z}_+)$ onto H_β . Define the representation $\tau_\beta: M \to B(H_\beta): \tau_\beta(n) = P_\beta T_0(n) P_\beta$, where $T_0: M \to B(l^2(\mathbb{Z}_+))$ is the inverse representation defined above. Since $T_0(n)$ maps H_β onto itself, the representation $\tau_\beta: M \to B(H_\beta)$ is an isometric representation of the semigroup M .

Lemma 4.1. *The representation* $\tau_{\beta}: M \to B(H_{\beta})$ *is an inverse representation if and only if either* $\beta = 0 \text{ or } |\beta| = 1.$

Proof. If $\beta = 0$, then $g_0 = e_1$ and $H_0 = l^2(\mathbb{N})$. Hence the representation $\tau_0: M \to B(l^2(\mathbb{N}))$ is unitary equivalent to representation T_0 .

If $|\beta|=1$, then $g_{\beta}=\beta e_0$ and $H_{\beta}=l^2(M)$, and in this case the representation $\tau_{\beta}:M\to B(l^2(M))$ is unitary equivalent to representation T_1 .

Now assuming $0 < |\beta| < 1$, we show that the operator $\tau^*_{\beta}(3)\tau_{\beta}(2)\tau^*_{\beta}(2)\tau_{\beta}(3)$ is not a projection. We first evaluate $\tau^*_{\beta}(2)\tau_{\beta}(3)$ on basis elements g_{β} and e_n of the space H_{β} . We have $\tau^*_{\beta}(2)\tau_{\beta}(3)e_n =$ $e_{n+1}, n = 2, 3, \ldots$, that is, $\tau_{\beta}^*(2)\tau_{\beta}(3)$ is an one-sided shift operator on H_0 . Hence the contraction of $\tau_{\beta}^{*}(3)\tau_{\beta}(2)\tau_{\beta}^{*}(2)\tau_{\beta}(3)$ on H_{0} is an identity operator. We have

$$
(\tau_{\beta}^{*}(2)\tau_{\beta}(3)g_{\beta},g_{\beta})=(\tau_{\beta}(3)g_{\beta},\tau_{\beta}(2)g_{\beta})=\beta t,
$$

 $(\tau_{\beta}^{*}(2)\tau_{\beta}(3)g_{\beta},e_{2})=(\tau_{\beta}(3)g_{\beta},e_{4})=t, \quad (\tau_{\beta}^{*}(2)\tau_{\beta}(3)g_{\beta},e_{n})=0 \text{ for } n \geq 3.$

Hence $\tau_{\beta}^{*}(2)\tau_{\beta}(3)g_{\beta} = \beta t g_{\beta} + t e_2$, implying

$$
\tau_{\beta}(2)(\beta tg_{\beta} + te_2) = \beta t(\beta e_2 + te_3) + te_4.
$$

Now we evaluate $\tau_{\beta}^{*}(3)e_2, \tau_{\beta}^{*}(3)e_3$ and $\tau_{\beta}^{*}(3)e_4.$ It is clear that

$$
(\tau_{\beta}^*(3)e_2, g_{\beta}) = 0 = (\tau_{\beta}^*(3)e_2, e_n), \ n \ge 2,
$$

implying $\tau_{\beta}^*(3)e_2 = 0$. Next, we have

$$
(\tau_{\beta}^{*}(3)e_3, e_n) = (T^{*}(3)e_4, e_n) = 0
$$
 for all $n = 2, 3, ...,$ and

$$
(\tau_{\beta}^{*}(3)e_3, g_{\beta}) = (e_3, \beta e_3 + t e_4) = \overline{\beta}, \ (\tau_{\beta}^{*}(3)e_4, g_{\beta}) = (e_4, \beta e_3 + t e_4) = t.
$$

Hence $\tau^*_{\beta}(3)e_3 = \bar{\beta}g_{\beta}, \tau^*_{\beta}(3)e_4 = tg_{\beta}$. Thus, we have

$$
\tau_{\beta}^*(3)\tau_{\beta}(2)\tau_{\beta}^*(2)\tau_{\beta}(3)g_{\beta}=(|\beta|^2t^2+t^2)g_{\beta}.
$$

It follows from $0<|\beta|< 1$ and $|\beta|^2+t^2=1$ that $|\beta|^2t^2+t^2< 1$. Hence the operator $\tau_\beta^*(3)\tau_\beta(2)\tau_\beta^*(2)\tau_\beta(3)$ is a diagonal operator with respect to basis g_β,e_2,e_3,\dots with eigenvalues $|\beta|^2t^2+t^2$ and 1. Since this operator is not a projection, we conclude that $M_{\tau_\beta}^*$ is not an inverse semigroup. The proof is completed.

Theorem 4.1. *The following assertions hold:*

- *1. The representation* τ_{β} *of the semigroup M is irreducible and isometric.*
- *2. If* $\beta_1 \neq \beta_2$ *and* $|\beta_1| < 1$ *, then the representations* T_{β_1} *and* T_{β_2} *are unitary equivalent.*

Proof. (1) Observe first that if β ² $t^2 + t^2 = 1$, then $\beta = 0$. Hence in this case we obtain a representation τ_0 which, as it was mentioned above, is not only irreducible and isometric but also inverse. For $|\beta|^2 t^2 + t^2 \neq 1$ we set

$$
Q_{\beta} = c(I - \tau_{\beta}^{*}(3)\tau_{\beta}(2)\tau_{\beta}^{*}(2)\tau_{\beta}(3)),
$$
 where $c = \frac{1}{1 - |\beta|^{2}t^{2} - t^{2}}$,

and observe that Q_β is a projection onto the one-dimensional space $\mathbb{C}g_\beta$, while

 $A_{\beta}=(I-Q_{\beta})\tau_{\beta}^*(2)\tau_{\beta}(3)(I-Q_{\beta})$ is an one-sided shift operator on H_0 which vanishes on g_{β} , that is, $A_{\beta}g_{\beta} = 0$, $A_{\beta}e_n = e_{n+1}$ for $n = 2, 3, \ldots$ Therefore the C^* -algebra generated by the operator A_{β} is a Toeplitz algebra on H_0 containing all the compact operators from $(1 - Q_\beta)B(H_\beta)(1 - Q_\beta)$. Therefore each invariant subspace of C^* -algebra generated by the representation τ_β either contains H_0 or is orthogonal to H_0 . To complete the proof of assertion (1), it remains to observe that since $H_\beta = \mathbb{C}g_\beta \oplus H_0$ and $\tau_\beta(2)g_\beta \in H_0$, the representation τ is irreducible.

(2) Let $\tau_{\beta_1} \sim \tau_{\beta_2}$ and $0 < |\beta_1| < 1$. We show that $\beta_1 = \beta_2$. Let $U : H_{\beta_1} \to H_{\beta_2}$ be a unitary operator such that $\tau_{\beta_1}=UT_{\beta_2}U^*$. Since each element from H_{β_i} on which the operators $\tau_{\beta_i}^*(2)$ and $\tau_{\beta_i}^*(3)$ vanish is a multiple of the element g_{β_i} , $i = 1, 2$, the unitary operator $U : H_{\beta_2} \to H_{\beta_2}$ transfers the space $\mathbb{C}g_{\beta_1}$ on $\mathbb{C}g_{\beta_2}$, that is, $Ug_{\beta_1}=e^{i\theta}g_{\beta_2},\ 0\le\theta\le 2\pi.$ Next, since $V=e^{-i\theta}U$ is a unitary operator, we have $\tau_{\beta_1} = V \tau_{\beta_2} V^*$ and $V g_{\beta_1} = g_{\beta_2}$. Therefore

$$
\beta_1 t_1 = (\tau_{\beta_1}^*(2)\tau_{\beta_1}(3)g_{\beta_1}, g_{\beta_1}) = (\tau_{\beta_2}^*(2)\tau_{\beta_2}(3)g_{\beta_2}, g_{\beta_2}) = \beta_2 t_1,
$$

and $|\beta_1|^2t_1^2+t_1^2=|\beta_2|^2t_2^2+t_2^2$ are the eigenvalues of the operator $\tau_{\beta_i}^*(3)\tau_{\beta_i}(2)\tau_{\beta_i}^*(2)\tau_{\beta_i}(3)$ on the vector g_{β_i} , $i = 1, 2$. This implies $\beta_1 = \beta_2$. The proof is complete.

The following questions that arise naturally are of interest. To describe the class of all irreducible isometric representations of the semigroup M . Do all the irreducible isometric infinite representations of the semigroup M unitary equivalent to some representation $\tau_\beta : M \to B(H_\beta)$?

The author would like to thank Professor S. A. Grigoryan for supervising this research, and Professor V. A. Arzumanyan for reading the manuscript and for a number of helpful comments, which improved the presentation of the material.

JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS Vol. 48 No. 2 2013

84 TEPOYAN

REFERENCES

- 1. M.A. Aukhadiev, V.H. Tepoyan, "Isometric Representations of Totally Ordered Semigroups", Lobachevskii Journal of Mathematics, **33** (3), 239-243, 2012.
- 2. S.A. Grigoryan, A.F. Salakhutdinov, "C*-algebras generated by cancelative semigroups", Siberian Mathematical Journal, **51** (1), 16-25, 2010.
- 3. A. Clifford, G. Preston, *Algebraic Theory of Semigroups, V.1* (American Mathematical Society, 1961).
- 4. L.A. Coburn, "The C*-algebra generated by an isometry", Bull. Amer. Math. Soc., **73**, 722-726, 1967.
- 5. R.G. Douglas, "On the C*-algebra of a one-parameter semigroup of isometries", Acta Math., **128**, 143-152, 1972.
- 6. S.Y. Jang, "Uniqueness property of C*-algebras like the Toeplitz algebras", Trends Math., **6**, 29-32, 2003.
- 7. G.J. Murphy, "Ordered groups and Toeplitz algebras", J. Operator Theory, **18**, 303-326, 1987.
- 8. G. Murphy, *C*-Algebras and Operator Theory* (Academic Press, Boston, 1990).
- 9. I. Raeburn, S.T. Vittadello, "The isometric representation theory of a perforated semigroup", J. Operator Theory, **62** (2), 357-370, 2009.
- 10. S.T. Vittadello, "The isometric representation theory of numerical semigroups", Integral Equations and Operator Theory, **64** (4), 573-597, 2009.