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Abstract—In this paper we study isometric representations of the semigroup Z+\{1}. The notion
of inverse representation is introduced and a complete (to within unitary equivalence) description of
such representations of that semigroup is provided. A class of irreducible non-inverse representa-
tions (β-representations of the semigroup Z+\{1}) is described.
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1. INTRODUCTION

In the paper [4] Coburn proved that all semiunitary representations of the semigroup of nonnegative
integers by isometric operators generate canonically isomorphic algebras. Later a similar result for
semigroups with archimedian order and total order have been proved by Douglas [5] and Murphy [7],
respectively. In [1] was proved that all non-unitary isometric representations of a semigroup S generate
canonically isomorphic C∗-algebras if and only if the natural order on S is total. A simple example of
a semigroup with non-total order provides the semigroup Z+\{1}, which originally was discussed by
Murphy [7]. Later, Jang [6] pointed out two representations of this semigroup that generate canonically
non-isomorphic C∗-algebras. Raeburn and Vittadello [9] studied all isometric representations of the
semigroup Z+\{1} under certain condition.

The present paper is devoted to the isometric representations of the semigroup Z+\{1}. Here the
term isometric representation stands for a representation by isometric (more precisely, semiunitary)
operators in a Hilbert space. We introduce a notion of inverse representation and show that there
exist only two inverse irreducible representations (to within unitary equivalence), which are the same
representations as in [6], [7], [9], [10]. We also study non-inverse representations of the semigroup
Z+\{1}.

2. INVERSE REPRESENTATIONS

Throughout the paper S will stand for an abelian additive cancelative semigroup containing the
neutral element 0 and not containing a group different from trivial. By Γ we denote the Grothendieck
group generated by the semigroup S. Recall that the group Γ is a quotient of the semigroup S × S with
respect to equivalence (a, b) ∼ (c, d) if and only if a + d = b + c, and the inverse of the quotient class
[(a, b)] is [(b, a)]. The notation Γ = S − S is commonly used.

Let T : S → B(HT ) be the faithful non-unitary isometric representation of the semigroup S into
algebra B(HT ) of all bounded linear operators on the Hilbert space HT . Observe that in this case
T (0) = I.

For any a ∈ S by T ∗(a) we denote the conjugate of the operator T (a). We have T ∗(a)T (a) = I, where
I is the identity operator, and T (a)T ∗(a) = PT (a), where PT (a) is the projection (PT (a) �= I).
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Let T : S → B(HT ) be an isometric representation of the semigroup S. An element h0 ∈ HT we call
initial for the operator T (a) if T ∗(a)h0 = 0 for any a ∈ S\{0} and ||h0|| = 1.

The operators T (a) and T ∗(b), a, b ∈ S, we call trivial monomials. A monomial is defined to be a
finite product of trivial monomials. The set of all monomials forms a multiplicative involutive semigroup,
which we will denote by S∗

T . On the semigroup S we define the order: a ≺ b if b = a + c. Note that S is a
net with respect to this order.

Lemma 2.1. For any monomial V there exist x and y in S such that

lim
c∈S

T ∗(c)V T (c) = T ∗(x)T (y),

where limc∈S is the limit by the net S.

Proof. Let V be a monomial represented as follows

V =
n∏

i=1

T
′
(ai),

where T
′
(ai) is either T (ai) or T ∗(ai). We split the set {ai}n

i=1 into two subsets: {aik}l
k=1 and {aij}n

j=l+1.
The first subset consists of those {ai}n

i=1 for which the monomial V involves the operator T (ai), while
for the second V involves the operator T ∗(ai). Let

a =
n∑

j=l+1

aij , b =
l∑

k=1

aik .

Using the equalities T ∗(s)T (s) = I and T (s)T (t) = T (t)T (s) for any s, t ∈ S we have

T ∗(c)V T (c) = T ∗(a)T (b),

where c = a + b. Therefore for any d, c ≺ d

T ∗(d)V T (d) = T ∗(a)T (b) = lim
c∈S

T ∗(c)V T (c),

and the result follows.
Observe that if T ∗(a)T (b) = T ∗(c)T (d) for some a, b, c and d from S, then due to faithfulness of the

representation we have b + c = a + d. This implies that to each monomial V can be correspond a unique
element b − a from the Grothendieck group Γ. The element b − a we call an index of the monomial V
and denote by ind(V ) = b − a. This notion was introduced in [2] for regular representation of semigroup
S.

Lemma 2.2. The following assertions hold:

1. The index of a monomial does not depend on its representation by elementary monomials.

2. The index of a product of monomials is equal to the sum of indices of factors:

ind(V1 · V2) = ind(V1) + ind(V2).

Denote by S∗
0,T the subsemigroup of the semigroup S∗

T consisting of those V for which ind(V ) = 0.

An isometric representation T : S → B(HT ) is called inverse representation if S∗
T is an inverse

semigroup with respect to multiplication and involution, or equivalently, if S∗
0,T is a semigroup of

idempotents in S∗
T (i.e., a semigroup of orthogonal projections). According to lemma 2.2 from [2] each

semigroup S possesses at least one inverse representation. On the other hand, as it was shown in [1], if
the above defined order on S is a total order, then all the isometric representations of S are inverse.

A simple example of inverse representation is the representation L : Z+ → B(l2(Z+)) by the shift op-
erator L(n)em = en+m, where en(m) = δn,m is the Kronecker symbol. Notice that the system {en(m)}
forms an orthonormal basis in l2(Z+), and in this case, the semigroup Z+

∗
L is a bicyclic semigroup.
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3. INVERESE REPRESENTATIONS OF THE SEMIGROUP Z+\{1}
Below we use the notation M = Z+\{1}. Murphy [7], and then Jang [6], have proved that there exist

at least two isometric representations of the semigroup M that generate canonically non-isomorphic
C∗-algebras. In [9] were studied isometric representations T of the semigroup M , when the projections
T (n)T ∗(n) and T (m)T ∗(m) commute for any n,m ∈ M . It follows from the results of this section that
T is an inverse representation. Here, in fact, we obtain the same results as in [9], but now their proofs
are based on the notion of initial element. This section is included for completeness of presentation of
the topic.

Consider two isometric representations of the semigroup M :

T1 : M → B(l2(M)), T0 : M → B(l2(Z+)),

determined by the shift operators T1(m)en = em+n and T0(m)fn = fm+n, where {en}n∈M and
{fn}n∈Z+ are the natural orthonormal bases in l2(M) and l2(Z+), respectively. In [7] and [6] it was
shown that these representations are not unitary equivalent.

The representations T0 and T1 generate inverse semigroups M∗
T0

and M∗
T1

. The representation T1 is
inverse because it is regular (see [1], [2]), while T0 is inverse because T ∗

0 (2)T0(3) is a shift operator on
l2(Z+) transferring the basis elements en into en+1. It is clear that (T ∗

0 (2)T0(3))n = T0(n), where n ≥ 2.
Observe that M∗

T0
is a bicyclic semigroup with a generator T ∗

0 (2)T0(3).
Below we show that each inverse faithful isometric irreducible representation of the semigroup M is

unitary equivalent to either T0 or T1. Let T be an irreducible isometric representation of semigroup M .

Lemma 3.1. For any n ≥ 2 the equality holds:

T ∗(n)T (n + 1) = T ∗(n + 1)T (n + 2).

Proof. It follows from the equality T ∗(m)T (m) = I that

T ∗(n)T (n + 1) = T ∗(n)T ∗(3)T (3)T (n + 1) = T ∗(n + 3)T (n + 4)

= T ∗(n + 1)T ∗(2)T (2)T (n + 2) = T ∗(n + 1)T (n + 2),

yielding the result.

Corollary 3.1. For all l, n,m ∈ M we have

T ∗(n)T (m) = T ∗(n + l)T (m + l).

Below we use the following elementary identities:

T ∗(2) = T ∗(3)T ∗(2)T (3), T ∗(3) = T ∗(4)T ∗(2)T (3), T ∗(3)T (2) = T ∗(2)T ∗(2)T (3),

which imply: if h0 ∈ ker T ∗(2)T (3), then

T ∗(2)T (3)h0 = T ∗(2)h0 = T ∗(3)h0 = T ∗(3)T (2)h0 = 0.

Lemma 3.2. Let T : M → B(H) be an irreducible representation, and let ker T ∗(2)T (3) �= 0. Then
T is inverse and is unitary equivalent to the representation T1.

Proof. We fix h0 ∈ ker T ∗(2)T (3) to satisfy ||h0|| = 1. Denote by H0 the Hilbert subspace in H ,
generated by the linear combinations of the elements of the set {hn}n∈M , where hn = T (n)h0. It is
clear that ||hn|| = 1.

We show that H0 = H . Observe first that since T (n)H0 ⊂ H0 it is enough to show that T ∗(n)hm

belongs to H0 for all n ∈ M . The above equalities imply

T ∗(2)h0 = 0, T ∗(2)h3 = T ∗(2)T (3)h0 = 0,

T ∗(3)h0 = 0, T ∗(3)h2 = T ∗(2)T ∗(2)T (3)h0 = 0,

T ∗(3)h4 = T ∗(3)T (4)h0 = T ∗(2)T (3)h0 = 0.
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Now, taking into account that if n ∈ M\{0; 3}, then n − 2 also belongs to M , we obtain

T ∗(2)hn = T ∗(2)T (2)hn−2 = hn−2.

Similarly T ∗(3)hm = hm−3 for m ∈ M\{0, 2, 4}.
Let now m be an arbitrary number from M . Then m = 3l + 2k, T ∗(m) = T ∗(3)lT ∗(2)k. Therefore

either T ∗(m)hn = 0 or T ∗(m)hn = hn−m, implying that H0 = H .
Next, we show that the set {hn}n∈M forms an orthonormal basis in H0. Let n,m ∈ M and n > m.

Assuming that n − m �= 1, we have

(hm, hn) = (T ∗(n − m)h0, h0) = 0.

If n = m + 1, then T ∗(m)T (n) = T ∗(2)T (3) and (hm, hn) = (h0, T
∗(2)T (3)h0) = 0. Finally, we intro-

duce the operator U : H0 → l2(M), Uhn = en, and observe that U∗T1U = T . This completes the proof.

Lemma 3.3. Let T : M → B(H) be an inverse representation. Then

P = T ∗(3)T (2)T ∗(2)T (3) and Q = T ∗(2)T (3)T ∗(3)T (2)

are projections and Q < P .

Proof. It is easy to check that P and Q are projections. So, we prove that Q < P . Using Lemma 3.1 and
the equalities

T (2)T ∗(2)T (3)T ∗(3) = T (3)T ∗(3)T (2)T ∗(2), T ∗(2)T (4) = T (2),

we can write

PQ = T ∗(3)T (2)T ∗(2)T (3)T ∗(2)T (3)T ∗(3)T (2)

= T ∗(3)T (2)T ∗(2)T (3)T ∗(3)T (4)T ∗(3)T (2)

= T ∗(3)T (3)T ∗(3)T (2)T ∗(2)T (4)T ∗(3)T (2) = T ∗(3)T (2)T ∗(2)T (2)T (2)T ∗(3)T (2)

= T ∗(3)T (2)T (2)T ∗(3)T (2) = T ∗(3)T (4)T ∗(3)T (2) = T ∗(2)T (3)T ∗(3)T (2) = Q,

and the result follows.

Lemma 3.4. Let T be a non-unitary isometric representation of the semigroup M . Then there
exists an element which is initial for any operator T (n).

Proof. Denote H2 = ker T ∗(2). It is clear that T ∗(3) : H2 → H2. Indeed,

T ∗(2)T ∗(3)H2 = T ∗(3)T ∗(2)H2 = 0.

Thus, two cases are possible: either T ∗(3)H2 = {0} or T ∗(3)H2 �= {0}. In the first case as an initial
element can be taken any element from H2. As for the second case, we fix a non-zero element h2 ∈ H2,
then h0 = T ∗(3)h2||T ∗(3)h2||−1 will be an initial element because we can apply to h0 the operator T ∗(3)
and T ∗(6) = T ∗(2)T ∗(2)T ∗(2). The proof is complete.

Lemma 3.5. Let T : M → B(H) be an irreducible non-unitary inverse representation of M , and
let ker T ∗(2)T (3) = {0}. Then T is unitary equivalent to the representation T0.

Proof. It follows from the condition ker T ∗(2)T (3) = {0} that P = I is an identity operator and
T ∗(2)T (3) is an isometry. We show that T ∗(2)T (3) is a non-unitary operator. Indeed, according to
Lemma 3.1 we have

T ∗(2)T (3)T ∗(2)T (3) = T ∗(2)T (3)T ∗(3)T (4) = T ∗(2)T (3)T ∗(3)T (2)T (2) = QT (2).

The operator QT (2) is non-unitary because it is a product of a projection and an isometric operator.
Hence T ∗(2)T (3) is also a non-unitary isometric operator. By the Wold-von Neumann decomposition
theorem (see, e.g., [8]) the isometric operator T ∗(2)T (3) can be represented as a direct sum of a shift
operator and a unitary operator. Let h0 ∈ H be an initial element for the operator T ∗(2)T (3).
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We set hn = (T ∗(2)T (3))nh0. Since P = I, we have ||hn|| = 1 and (hn, hm) = 0 for n �= m, that
is, {hn}∞n=0 is an orthonormal system in H . It follows from the equalities 1 = ||h2|| = ||QT (2)h0|| and
||T (2)h0|| = 1 that QT (2)h0 = T (2)h0, that is, h2 = T (2)h0. Similarly we obtain

h3 = (T ∗(2)T (3))T (2)h0 = T (3)h0.

Continuing this process we get hn = T (n)h0. Thus, a Hilbert subspace H0 of H for which the system
{hn}∞n=0 forms an orthonormal basis is invariant for the shift operator T ∗(2)T (3) and on H0 we have
(T ∗(2)T (3))n = T (n), n ∈ M. Hence H0 = H and the unitary operator

U : H0 → l2(Z+), Uhn = en,

is an intertwining operator, that is, U∗T0U = T . This completes the proof.
From Lemmas 3.2 and 3.5 we obtain the following results.

Theorem 3.1. Let T be a non-unitary inverse representation of the semigroup M . Then T is
unitary equivalent to either T0 or T1.

Theorem 3.2. Each isometric inverse representation T of the semigroup M can be represented as
a direct sum

T = kT0 ⊕ lT1 ⊕ T2,

where k and l are the multiplicities of the representations T0 and T1, respectively, and T2 is a
unitary representation of the semigroup M .

Remark 3.1. It can be shown that for any isometric representation T of the semigroup M the in-
verseness of the semigroup M∗

T is equivalent to the commutativity of elementary projections PT (n) =
T (n)T ∗(n), n ∈ M . The following question is of interest: do the notions of inverseness and permutability
of the elementary projections for an isometric representation of a general semigroup equivalent?

4. β-REPRESENTATION OF THE SEMIGROUP M

It follows from Coburn’s theorem [4] that there is only one (to within unitary equivalence) infinite
irreducible representation of the semigroup Z+. In this section we prove that for the “deformed”
semigroup M the number of such representations is continuum.

Let H0 be a Hilbert subspace of the space l2(Z+) generated by the basis {en}∞n=2, en(m) = δn,m.
Denote by Hβ the Hilbert subspace of l2(Z+) generated by the elements from H0 and the element
gβ = βe0 + te1, where β ∈ C, t ∈ R+ and β2 + t2 = 1. It is clear that the family {gβ , {en}∞n=2} forms
an orthonormal basis in Hβ and Hβ = Cgβ ⊕ H0.

Let Pβ : l2(Z+) → Hβ be the orthogonal projection from l2(Z+) onto Hβ . Define the representa-
tion τβ : M → B(Hβ): τβ(n) = PβT0(n)Pβ , where T0 : M → B(l2(Z+)) is the inverse representation
defined above. Since T0(n) maps Hβ onto itself, the representation τβ : M → B(Hβ) is an isometric
representation of the semigroup M .

Lemma 4.1. The representation τβ : M → B(Hβ) is an inverse representation if and only if either
β = 0 or |β| = 1.

Proof. If β = 0, then g0 = e1 and H0 = l2(N). Hence the representation τ0 : M → B(l2(N) is unitary
equivalent to representation T0.

If |β| = 1, then gβ = βe0 and Hβ = l2(M), and in this case the representation τβ : M → B(l2(M))
is unitary equivalent to representation T1.

Now assuming 0 < |β| < 1, we show that the operator τ∗
β(3)τβ(2)τ∗

β (2)τβ(3) is not a projection.
We first evaluate τ∗

β(2)τβ(3) on basis elements gβ and en of the space Hβ . We have τ∗
β(2)τβ(3)en =

en+1, n = 2, 3, . . ., that is, τ∗
β(2)τβ(3) is an one-sided shift operator on H0. Hence the contraction of

τ∗
β(3)τβ(2)τ∗

β(2)τβ(3) on H0 is an identity operator. We have

(τ∗
β(2)τβ(3)gβ , gβ) = (τβ(3)gβ , τβ(2)gβ) = βt,
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(τ∗
β(2)τβ(3)gβ , e2) = (τβ(3)gβ , e4) = t, (τ∗

β(2)τβ(3)gβ , en) = 0 for n ≥ 3.

Hence τ∗
β(2)τβ(3)gβ = βtgβ + te2, implying

τβ(2)(βtgβ + te2) = βt(βe2 + te3) + te4.

Now we evaluate τ∗
β(3)e2, τ∗

β(3)e3 and τ∗
β(3)e4. It is clear that

(τ∗
β(3)e2, gβ) = 0 = (τ∗

β(3)e2, en), n ≥ 2,

implying τ∗
β(3)e2 = 0. Next, we have

(τ∗
β(3)e3, en) = (T ∗(3)e4, en) = 0 for all n = 2, 3, . . . , and

(τ∗
β(3)e3, gβ) = (e3, βe3 + te4) = β̄, (τ∗

β(3)e4, gβ) = (e4, βe3 + te4) = t.

Hence τ∗
β(3)e3 = β̄gβ , τ∗

β(3)e4 = tgβ . Thus, we have

τ∗
β(3)τβ(2)τ∗

β(2)τβ(3)gβ = (|β|2t2 + t2)gβ.

It follows from 0 < |β| < 1 and |β|2 + t2 = 1 that |β|2t2 + t2 < 1. Hence the operator τ∗
β(3)τβ(2)τ∗

β (2)τβ(3)
is a diagonal operator with respect to basis gβ , e2, e3, . . . with eigenvalues |β|2t2 + t2 and 1. Since this
operator is not a projection, we conclude that M∗

τβ
is not an inverse semigroup. The proof is completed.

Theorem 4.1. The following assertions hold:

1. The representation τβ of the semigroup M is irreducible and isometric.

2. If β1 �= β2 and |β1| < 1, then the representations Tβ1 and Tβ2 are unitary equivalent.

Proof. (1) Observe first that if |β|2t2 + t2 = 1, then β = 0. Hence in this case we obtain a representation
τ0 which, as it was mentioned above, is not only irreducible and isometric but also inverse. For
|β|2t2 + t2 �= 1 we set

Qβ = c(I − τ∗
β(3)τβ(2)τ∗

β (2)τβ(3)), where c =
1

1 − |β|2t2 − t2
,

and observe that Qβ is a projection onto the one-dimensional space Cgβ , while
Aβ = (I − Qβ)τ∗

β(2)τβ(3)(I − Qβ) is an one-sided shift operator on H0 which vanishes on gβ , that is,
Aβgβ = 0, Aβen = en+1 for n = 2, 3, . . .. Therefore the C∗-algebra generated by the operator Aβ is a
Toeplitz algebra on H0 containing all the compact operators from (1 − Qβ)B(Hβ)(1 − Qβ). Therefore
each invariant subspace of C∗-algebra generated by the representation τβ either contains H0 or is
orthogonal to H0. To complete the proof of assertion (1), it remains to observe that since Hβ = Cgβ ⊕H0

and τβ(2)gβ ∈ H0, the representation τ is irreducible.
(2) Let τβ1 ∼ τβ2 and 0 < |β1| < 1. We show that β1 = β2. Let U : Hβ1 → Hβ2 be a unitary operator
such that τβ1 = UTβ2U

∗. Since each element from Hβi
on which the operators τ∗

βi
(2) and τ∗

βi
(3) vanish

is a multiple of the element gβi
, i = 1, 2, the unitary operator U : Hβ2 → Hβ2 transfers the space Cgβ1

on Cgβ2 , that is, Ugβ1 = eiθgβ2 , 0 ≤ θ ≤ 2π. Next, since V = e−iθU is a unitary operator, we have
τβ1 = V τβ2V

∗ and V gβ1 = gβ2 . Therefore

β1t1 = (τ∗
β1

(2)τβ1(3)gβ1 , gβ1) = (τ∗
β2

(2)τβ2(3)gβ2 , gβ2) = β2t1,

and |β1|2t21 + t21 = |β2|2t22 + t22 are the eigenvalues of the operator τ∗
βi

(3)τβi
(2)τ∗

βi
(2)τβi

(3) on the vector
gβi

, i = 1, 2. This implies β1 = β2. The proof is complete.
The following questions that arise naturally are of interest. To describe the class of all irreducible

isometric representations of the semigroup M . Do all the irreducible isometric infinite representations of
the semigroup M unitary equivalent to some representation τβ : M → B(Hβ)?
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