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Problem 1:

What is the value of

3 +
1

3 + 1
3+ 1

3

?

(A)
31

10
(B)

49

15
(C)

33

10
(D)

109

33
(E)

15

4

Answer (D): Working from the bottom up shows that

3 +
1

3 + 1
3+ 1

3

= 3 +
1

3 + 1
10
3

= 3 +
1

3 + 3
10

= 3 +
1
33
10

= 3 +
10

33
=

109

33
.

Note: Analogous to the golden ratio, the bronze ratio is the positive solution to the equation

x2 = 3x + 1, which equals 3+
√
32+4
2 and has the continued fraction expansion 3 + 1

3+ 1
3+ ···

. The

approximation evaluated in this problem is accurate to three decimal places (3.303). Assuming the

continued fraction expansion has a limiting value x0, it can be seen that x0 = 3 +
1

x0
, which is

equivalent to x20 = 3x0 + 1.

The bronze ratio, 3+
√
32+4
2 , is analogous to the golden ratio, 1+

√
12+4
2 . The golden ratio is associated

with

1 +
1

1 + 1
1+ ···

.

Similarly, the silver ratio is 2+
√
22+4
2 , associated with

2 +
1

2 + 1
2+ ···

.

These metallic ratios are also related to generalizations of the Fibonacci sequence, arise as lengths
of diagonals in regular polygons, and have many other geometric and algebraic interpretations as
well.

Problem 2:

Mike cycled 15 laps in 57 minutes. Assume he cycled at a constant speed throughout. Approxi-
mately how many laps did he complete in the first 27 minutes?

(A) 5 (B) 7 (C) 9 (D) 11 (E) 13

Answer (B): Let L denote the number of laps completed in the first 27 minutes. During the
first 27 minutes Mike rode at a speed of L

27 laps per minute. On the entire ride, Mike’s speed was
15
57 laps per minute. Therefore L

27 = 15
57 , so

L =
15 · 27
57

=
5 · 27
19

=
135

19
= 7

2

19
≈ 7.



2022 AMC 10 A Solutions 3

Problem 3:

The sum of three numbers is 96. The first number is 6 times the third number, and the third
number is 40 less than the second number. What is the absolute value of the difference between
the first and second numbers?

(A) 1 (B) 2 (C) 3 (D) 4 (E) 5

Answer (E): Let the numbers be a, b, and c. Then a + b + c = 96, a = 6c, and c = b − 40.
From the first two equations it follows that b + 7c = 96. From the third equation it follows that
b+ 7(b− 40) = 96, which gives 8b = 376. Hence b = 47, c = 7, a = 42, and |a− b| = 5.

Problem 4:

In some countries, automobile fuel efficiency is measured in liters per 100 kilometers while other
countries use miles per gallon. Suppose that 1 kilometer equals m miles, and 1 gallon equals ℓ
liters. Which of the following gives the fuel efficiency in liters per 100 kilometers for a car that gets
x miles per gallon?

(A)
x

100ℓm
(B)

xℓm

100
(C)

ℓm

100x
(D)

100

xℓm
(E)

100ℓm

x

Answer (E): Because the car can travel x miles per gallon, it uses 1
x gallons per mile. This can

be converted to liters per 100 kilometers by multiplying by fractions equivalent to 1, treating units
as factors and canceling common factors:

1

x

gallons

miles
=

1

x
· gallons
miles

· m miles

1 kilometers
· ℓ liters

1 gallons
· 100
100

=
100ℓm

x

liters

100 kilometers
.
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Problem 5:

Square ABCD has side length 1. Points P , Q, R, and S each lie on a side of ABCD so that
APQCRS is an equilateral convex hexagon with side length s. What is s ?

(A)

√
2

3
(B)

1

2
(C) 2−

√
2 (D) 1−

√
2

4
(E)

2

3

Answer (C): Without loss of generality, assume that P and Q lie on AB and BC, respectively.
Then AP = PQ = QC = s and PB = BQ = 1 − s, so PQ =

√
2(1 − s). Because APQCRS is

equilateral, it follows that s =
√
2(1− s), from which

s =

√
2

1 +
√
2
= 2−

√
2.

AC

B

D

PQ

SR

s

ss

1− s1− s

Problem 6:

Which expression is equal to
∣∣∣ a− 2−

√
(a− 1)2

∣∣∣ for a < 0 ?

(A) 3− 2a (B) 1− a (C) 1 (D) a+ 1 (E) 3

Answer (A): Because a is negative, a − 1 < 0, so
√
(a− 1)2 = |a − 1| = 1 − a. Therefore

distributing gives a− 2− (1− a) = 2a− 3. Because a is negative, 2a− 3 < 0, so |2a− 3| = 3− 2a.
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Problem 7:

The least common multiple of a positive integer n and 18 is 180, and the greatest common divisor
of n and 45 is 15. What is the sum of the digits of n ?

(A) 3 (B) 6 (C) 8 (D) 9 (E) 12

Answer (B): The positive integer n must be a multiple of 15 and a divisor of 180. There are 6
such integers, as shown in the following table.

n lcm(n, 18) gcd(n, 45)

15 90 15
30 90 15
45 90 45
60 180 15
90 90 45
180 180 45

The only choice that satisfies the conditions is n = 60, and the requested sum of digits is 6.

OR

Because 18 = 2 · 32 and 180 = 22 · 32 · 5, it follows from lcm(n, 18) = 180 that n is divisible by 22

but not 23, that n is divisible by 5 but not 52, and that n can have no prime factors other than 2,
3, or 5. Because 45 = 32 · 5 and 15 = 3 · 5, it follows from gcd(n, 45) = 15 that n is divisible by 3
but not 32. Therefore n = 22 · 3 · 5 = 60, and the sum of its digits is 6.

Problem 8:

A data set consists of 6 (not distinct) positive integers: 1, 7, 5, 2, 5, and X. The average (arithmetic
mean) of the 6 numbers equals a value in the data set. What is the sum of all possible values of X ?

(A) 10 (B) 26 (C) 32 (D) 36 (E) 40

Answer (D): First note that the mean of the elements of the data set excluding X is 4. The
given condition will therefore be met if X = 4, and if X ̸= 4, then the mean will not be X. Because
X is a positive integer, the mean of the full data set must be greater than or equal to 21÷ 6 = 3.5.
The only other possibilities for the mean are therefore 5 and 7. The mean will be 5 if and only if
1 + 7+ 5+ 2+ 5+X = 6 · 5, which implies that X = 30− 20 = 10. The mean will be 7 if and only
if 1 + 7 + 5 + 2 + 5 + X = 6 · 7, which implies that X = 42 − 20 = 22. The sum of the possible
values of X is 4 + 10 + 22 = 36.
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Problem 9:

A rectangle is partitioned into 5 regions as shown. Each region is to be painted a solid color—red,
orange, yellow, blue, or green—so that regions that touch are painted different colors, and colors
can be used more than once. How many different colorings are possible?

(A) 120 (B) 270 (C) 360 (D) 540 (E) 720

Answer (D): There are 5 possible colors for the central rectangle in the lower row. There then are
4 possible colors for the rectangle at the left end of the lower row, then 3 choices for the rectangle
at the upper left, then 3 for the rectangle at the upper right, and 3 for the rectangle at the lower
right. In all there are 5 · 4 · 3 · 3 · 3 = 540 possible colorings.

OR

There are 5! = 120 ways to paint the regions using all 5 colors. If two regions are painted the same
color, then those two regions must be either the upper left and lower right regions, or the upper right
and lower left regions, or the lower left and lower right regions. Thus there are 3 · (5 · 4 · 3 · 2) = 360
ways to paint the regions using four colors. The only way to paint the regions using only three
colors is to paint the upper left and lower right regions the same color and the upper right and lower
left regions the same color. This can be done in 5 ·4 ·3 = 60 ways. The total is 120+360+60 = 540.

Note: This problem can be viewed in terms of chromatic polynomials in graph theory, a concept
introduced by George David Birkhoff in 1912.
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Problem 10:

Daniel finds a rectangular index card and measures its diagonal to be 8 centimeters. Daniel then
cuts out equal squares of side 1 cm at two opposite corners of the index card and measures the
distance between the two closest vertices of these squares to be 4

√
2 centimeters, as shown below.

What is the area of the original index card?

1
18

4
√
2

(A) 14 (B) 10
√
2 (C) 16 (D) 12

√
2 (E) 18

Answer (E): Let x and y be the side lengths of the index card. Then the corners of the two cut
squares are opposite vertices of a rectangle with sides x− 2 and y − 2. The Pythagorean Theorem
applied twice yields

x2 + y2 = 82 = 64 and (x− 2)2 + (y − 2)2 =
(
4
√
2
)2

= 32.

Expanding the second equation and substituting the first one gives

64− 4(x+ y) + 8 = 32,

so x+ y = 10. Finally, the area of the rectangle is xy, which equals

1

2

(
(x+ y)2 −

(
x2 + y2

))
=

1

2
(100− 64) = 18.

Note: The original index card uniquely has dimensions 5±
√
7 cm.

Problem 11:

Ted mistakenly wrote 2m ·
√

1
4096 as 2 · m

√
1

4096 . What is the sum of all real numbers m for which

these two expressions have the same value?

(A) 5 (B) 6 (C) 7 (D) 8 (E) 9

Answer (C): Notice that 4096 = 212, so the first expression is

2m ·
(
2−12

) 1
2 = 2m−6,

and the second expression is

2 ·
(
2−12

) 1
m = 21−

12
m .

These two expressions have the same value if and only if m − 6 = 1 − 12
m . Multiplying both sides

of this equation by m, rearranging terms, and factoring gives (m− 3)(m− 4) = 0. The solutions of
this equation are m = 3 and m = 4. The requested sum of possible values for m is 3 + 4 = 7.
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Problem 12:

On Halloween 31 children walked into the principal’s office asking for candy. They can be classified
into three types: Some always lie; some always tell the truth; and some alternately lie and tell
the truth. The alternaters arbitrarily choose their first response, either a lie or the truth, but
each subsequent statement has the opposite truth value from its predecessor. The principal asked
everyone the same three questions in this order.

“Are you a truth-teller?” The principal gave a piece of candy to each of the 22 children who
answered yes.

“Are you an alternater?” The principal gave a piece of candy to each of the 15 children who
answered yes.

“Are you a liar?” The principal gave a piece of candy to each of the 9 children who answered yes.

How many pieces of candy in all did the principal give to the children who always tell the truth?

(A) 7 (B) 12 (C) 21 (D) 27 (E) 31

Answer (A): Let T denote the number of truth-tellers, Ao the number of alternators who tell
the truth on odd-numbered questions, Ae the number of alternators who tell the truth on even-
numbered questions, and L the number of liars. These four variables must satisfy the following
equations.

Total: 31 = T + L+Ae +Ao

Question 1: 22 = T + L+Ae

Question 2: 15 = L+Ae

Question 3: 9 = Ae

Subtract the third equation from the second to find that T = 7. Because they received candy only
in response to the first question, they received 7 pieces of candy.

Note: It may be further deduced from the system of equations that Ae = 9, L = 6, and Ao = 9.
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Problem 13:

Let △ABC be a scalene triangle. Point P lies on BC so that AP bisects ∠BAC. The line through
B perpendicular to AP intersects the line through A parallel to BC at point D. Suppose BP = 2
and PC = 3. What is AD ?

(A) 8 (B) 9 (C) 10 (D) 11 (E) 12

Answer (C): Let Q be the intersection point of AC and BD, as shown.

A

B C

D

P

Q

M

z

y

x

x

2 3

Because BQ ⊥ AP and ∠BAP = ∠QAP , it follows that △ABQ is isosceles with AB = AQ. Then
by the Angle Bisector Theorem,

3

2
=

PC

PB
=

AC

AB
=

AC

AQ
= 1 +

CQ

AQ
= 1 +

BC

AD
= 1 +

5

AD
.

Solving this equation yields AD = 10.

OR

Let M be the intersection point of AP and BQ. As above, △ABQ is isosceles with AB = AQ,
so BM = MQ. Let BM = MQ = x, QD = y, and AD = z. Because △AMD and △PMB are
similar, it follows that

z

2
=

x+ y

x
= 1 +

y

x
.

Further, △AQD and △CQB are also similar, so z
5 = y

2x . It follows that

z

2
− 1 =

y

x
=

2z

5
,

which yields z = 10.
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Problem 14:

How many ways are there to split the integers 1 through 14 into 7 pairs so that in each pair the
greater number is at least 2 times the lesser number?

(A) 108 (B) 120 (C) 126 (D) 132 (E) 144

Answer (E): If the lesser number in some pair is at least 8, then the greater number has to be
at least 8 · 2 = 16, which is impossible. This means that the lesser number in each pair must be
between 1 and 7, inclusive. Because there are exactly 7 pairs in the collection, it follows that the
lesser numbers must be exactly the numbers 1 through 7.

The 7 must be paired with the 14. There are then 2 choices for the partner of 6—being paired with
either 12 or 13. Now there are 3 choices for the partner of 5, because exactly 2 of the numbers
in {10, 11, 12, 13, 14} have already been picked. Continuing in this fashion, there are 4 possible
partners for the 4, then 3 possible partners for the 3, then 2 possible partners for the 2, and finally
1 possible partner for the 1. Multiplying these numbers of choices together gives a final answer of
1 · 2 · 3 · 4 · 3 · 2 · 1 = 144.
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Problem 15:

Quadrilateral ABCD with side lengths AB = 7, BC = 24, CD = 20, and DA = 15 is inscribed
in a circle. The area interior to the circle but exterior to the quadrilateral can be written in the
form aπ−b

c , where a, b, and c are positive integers such that a and c have no common prime factor.
What is a+ b+ c ?

(A) 260 (B) 855 (C) 1235 (D) 1565 (E) 1997

Answer (D): Observe that √
72 + 242 =

√
202 + 152 = 25.

If AC < 25, then ∠ABC and ∠ADC are both acute, so ABCD cannot be cyclic. Analogously, if
AC > 25, then ∠ABC and ∠ADC are both obtuse, and again ABCD cannot be cyclic. Therefore
△ABC and △CDA are both right triangles with hypotenuse 25.

The area of ABCD is 1
2 (7 · 24 + 15 · 20) = 234. Because ∠ABC and ∠ADC are right angles, AC

is the diameter of the circumcircle, so the circumcircle has radius 25
2 and its area is

π

(
25

2

)2
=

625π

4
.

Hence the required area is
625π

4
− 234 =

625π − 936

4
,

and the requested sum is 625 + 936 + 4 = 1565.

A

B

C

D

724

20 15

25
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Problem 16:

The roots of the polynomial 10x3−39x2+29x−6 are the height, length, and width of a rectangular
box (right rectangular prism). A new rectangular box is formed by lengthening each edge of the
original box by 2 units. What is the volume of the new box?

(A)
24

5
(B)

42

5
(C)

81

5
(D) 30 (E) 48

Answer (D): Let f(x) = 10x3 − 39x2 + 29x− 6 and let a, b, and c be the roots of f(x). Hence
f(x) = 10(x− a)(x− b)(x− c). Then the volume of the new box is

(2 + a)(2 + b)(2 + c) = −(−2− a)(−2− b)(−2− c) = −f(−2)

10
= − 1

10
(−80− 156− 58− 6) = 30.

OR

Dividing by 10 gives the polynomial

x3 − 39

10
x2 +

29

10
x− 3

5
,

whose roots are the same. If a, b, and c are the roots, then Vieta’s Formulas give

abc =
3

5
, ab+ bc+ ac =

29

10
, and a+ b+ c =

39

10
.

The volume of the new box is

(a+ 2)(b+ 2)(c+ 2) = abc+ 2(ab+ bc+ ac) + 4(a+ b+ c) + 8.

Substituting gives
3

5
+ 2 · 29

10
+ 4 · 39

10
+ 8 = 30.

Note: The solutions presented here did not require finding the roots. In fact, the roots of f(x) are
3, 1

2 , and
2
5 . The dimensions of the new box are 5, 5

2 , and
12
5 , which gives a volume of 5 · 52 ·

12
5 = 30.
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Problem 17:

How many three-digit positive integers a b c are there whose nonzero digits a, b, and c satisfy

0.a b c =
1

3
(0.a+ 0.b+ 0.c) ?

(The bar indicates digit repetition; thus 0.a b c is the infinite repeating decimal 0.a b c a b c . . ..)

(A) 9 (B) 10 (C) 11 (D) 13 (E) 14

Answer (D): The given equation means

100a+ 10b+ c

999
=

1

3

(
a

9
+

b

9
+

c

9

)
,

which simplifies to 7a = 3b+ 4c. Therefore 3b ≡ −4c ≡ 3c (mod 7), so b ≡ c (mod 7). Given that
the variables are nonzero digits, the possibilities for (b, c) are (1, 1), (2, 2), (3, 3), . . . , (9, 9), (1, 8),
(8, 1), (2, 9), and (9, 2). In each case the value of a is uniquely determined, and the 13 positive
integers are 111, 222, 333, . . . , 999, 518, 481, 629, and 592.

Problem 18:

Let Tk be the transformation of the coordinate plane that first rotates the plane k degrees counter-
clockwise around the origin and then reflects the plane across the y-axis. What is the least positive
integer n such that performing the sequence of transformations T1, T2, T3, . . . , Tn returns the point
(1, 0) back to itself?

(A) 359 (B) 360 (C) 719 (D) 720 (E) 721

Answer (A): Denote by O the origin of the coordinate plane. Let Pk be the point obtained
after the first k transformations, where P0 = (1, 0). Observe that, for each integer i and for every
point P , the transformation Ti(P ) preserves the distance from P to the origin. Thus OPk = 1
for every k. This means that the point Pk may be uniquely characterized by the counterclockwise

angle θk between the x-axis and the ray
−−→
OPk. (Here θk is measured in degrees.)

The transformation Tj rotates the plane j degrees counterclockwise around the origin and then
reflects the plane across the y-axis. This means that θk+1 = 180− (θk + k + 1) and

θk+2 = 180− (θk+1 + (k + 2))

= 180−
(
180− (θk + k + 1) + (k + 2)

)
= θk − 1.

Note that θ0 = 0 and θ1 = 179. It follows that θ2m = −m and θ2m+1 = 179−m for every positive
integer m. Therefore (1, 0) first returns to its starting position when m = 179 and n = 2 ·179+1 =
359.
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Problem 19:

Let Ln denote the least common multiple of the numbers 1, 2, 3, . . . , n, and let h be the unique
positive integer such that

1

1
+

1

2
+

1

3
+ · · ·+ 1

17
=

h

L17
.

What is the remainder when h is divided by 17 ?

(A) 1 (B) 3 (C) 5 (D) 7 (E) 9

Answer (C): Note that

1 +
1

2
+ · · ·+ 1

16
=

m

L16

for some integer m, so the given sum is

m

L16
+

1

17
=

h

L17
.

Now L17 = 17L16, so it follows that h = 17m + L16. Therefore h ≡ L16 (mod 17). Note that
L16 = 24 · 32 · 5 · 7 · 11 · 13. These factors modulo 17 satisfy 24 ≡ −1, 5 · 7 ≡ 1, 9 · 11 ≡ −3, and
13 ≡ −4, so the product is congruent to (−1)(1)(−3)(−4) = −12 ≡ 5 (mod 17).

Problem 20:

A four-term sequence is formed by adding each term of a four-term arithmetic sequence of positive
integers to the corresponding term of a four-term geometric sequence of positive integers. The first
three terms of the resulting four-term sequence are 57, 60, and 91. What is the fourth term of this
sequence?

(A) 190 (B) 194 (C) 198 (D) 202 (E) 206

Answer (E): Let the terms of the arithmetic sequence be a0, a1, a2, a3, and let the terms of the
geometric sequence be g0, g1, g2, g3. There must be constants b, d, c, and r such that an = b+ d · n
and gn = c · rn for n = 0, 1, 2, 3. Let the terms of the sum sequence be xn = an + gn. It is given
that x0 = 57, x1 = 60, and x2 = 91. With the goal of eliminating two of the constants, consider
x2 − 2x1 + x0. Then

28 = 91− 2 · 60 + 57 = (b+ 2d+ cr2)− 2(b+ d+ cr) + (b+ c) = c(r − 1)2.

Because g1 and g2 are integers, r must be a rational number, say p
q for some relatively prime positive

integers p and q. Then the equation above becomes c(p − q)2 = 28q2. Because gcd(p − q, q) =
gcd(p, q) = 1, either (p− q)2 = 4 or (p− q)2 = 1.

If (p − q)2 = 1, then c = 28q2. Because c < 57, it must be that q = 1 and c = 28. Then
p − q = 1 (because p ̸= 0), so p = 2 and r = 2. It follows that b = x0 − c = 57 − 28 = 29,
d = a1 − b = (60− 2 · 28)− 29 = −25, and a2 = 29 + 2 · (−25) < 0, violating the conditions of the
problem.

Therefore (p − q)2 = 4 and c = 7q2. Because p − q is even, q must be odd and the only choice
that makes c < 57 is q = 1. Then c = 7, p = 3, and r = 3. It follows that the geometric sequence
is 7, 21, 63, 189. Therefore a0 = 57 − 7 = 50 and a1 = 60 − 21 = 39, giving d = −11. Therefore
a3 = 50 + 3(−11) = 17 and x3 = 17 + 189 = 206.
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Problem 21:

A bowl is formed by attaching four regular hexagons of side 1 to a square of side 1. The edges of
adjacent hexagons coincide, as shown in the figure. What is the area of the octagon obtained by
joining the top eight vertices of the four hexagons, situated on the rim of the bowl?

(A) 6 (B) 7 (C) 5 + 2
√
2 (D) 8 (E) 9

Answer (B): Adjacent hexagons with side length 1 are folded up so that a square with side
length 1—the base of the bowl—exactly fits in the gap between them. By symmetry, a square
of side length 1 must also fit in the other gap formed by those two hexagons. It follows that the
distance between the closest vertices on adjacent hexagons on the top of the bowl are

√
2 units

apart—the diagonal of a unit square. Therefore the required octagon is as shown below.

1

1

1 1

1 1

1 1

1

1

1

1

√
2

√
2

√
2

√
2

Its area is the area of the 3× 3 square minus the areas of the four isosceles right triangular corners,
namely

3 · 3− 4 · 1
2
· 1 · 1 = 7.
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Problem 22:

Suppose that 13 cards numbered 1, 2, 3, . . . , 13 are arranged in a row. The task is to pick them up
in numerically increasing order, working repeatedly from left to right. In the example below, cards
1, 2, 3 are picked up on the first pass, 4 and 5 on the second pass, 6 on the third pass, 7, 8, 9, 10
on the fourth pass, and 11, 12, 13 on the fifth pass.

7 11 8 6 4 5 9 12 1 13 10 2 3

For how many of the 13! possible orderings of the cards will the 13 cards be picked up in exactly
two passes?

(A) 4082 (B) 4095 (C) 4096 (D) 8178 (E) 8191

Answer (D): Choose a subset S of {1, 2, 3, . . . , 13}, and place the cards numbered 1, 2, 3, . . . , |S|
in increasing order in the spots determined by S. Then place the remaining cards in increasing order
in the remaining (complementary) spots. The resulting arrangement of cards will be picked up in
at most two passes, and any other arrangement will require more than two passes. There are 213

choices for the subset S, but any subset of the form S = {1, 2, 3, . . . , k} will result in the cards being
picked up in one pass. There are 14 such “initial block” subsets (∅, {1}, {1, 2}, . . . , {1, 2, 3, . . . , 13})
that result in picking up the cards in one pass. This gives 213 − 14 = 8178 possible orderings
requiring exactly two passes.

OR

For each integer 1 ≤ m ≤ 13, let Am be the number of ways to arrange the 13 cards so that cards
1 through m are selected in the first pass with 1 or more cards left for a second pass. Observe that
there are

(
13
m

)
locations at which these cards can appear in the sequence, and within these locations

the cards must appear in increasing order. The remaining 13−m cards will occupy the remaining
slots; because these cards will be selected in the second pass, they must appear in increasing order.
As long as the first m cards do not occupy the first m spots in the sequence, two passes will be
required to pick up all the cards. Thus Am =

(
13
m

)
− 1. The total number of ways over all values of

m is

A1 + · · ·+A13 =

(
13

1

)
+ · · ·+

(
13

13

)
− 13 =

(
213 −

(
13

0

))
− 13 = 213 − 14 = 8178.

OR

For i = 1, 2, 3, . . . , 13 let pi denote the position of the number i in the list. Thus in the provided
example, p1 = 9, p2 = 12, p3 = 13, and so on. If pj < pj+1 < · · · < pk, then the cards numbered
j, j + 1, . . . , k are picked up on the same pass. However, if pk > pk+1, then that pass is complete,
and a new pass is required to pick up the card numbered k+1. The sequence of numbers pi is said
to have a drop at k when pk > pk+1. The total number of passes required to pick up all 13 cards is
one more than the number of drops in the sequence of numbers pi.

Let Dn denote the number of permutations of the numbers 1, 2, 3, . . . , n that have exactly one drop.
If π1 is a permutation of the numbers 1, 2, 3, . . . , n− 1 with exactly one drop, then a permutation
π2 of the numbers 1, 2, 3, . . . , n with exactly one drop can be created either by inserting n at the
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position of the drop, or by placing n at the righthand end of the sequence that defines π1. Thus
a permutation of the type π1 generates two permutations of the type π2. Now let π3 be the
permutation 1, 2, 3, . . . , n − 1 with no drop. A permutation π4 on 1, 2, 3, . . . , n with exactly one
drop can be created by inserting n either before 1, or between 1 and 2, or . . ., or between n−2 and
n− 1, which is a total of n− 1 places. Thus

Dn = 2Dn−1 + n− 1.

Because D1 = 0 and D2 = 1, it follows by induction that Dn = 2n − n − 1, and hence the answer
is D13 = 8178.

Note: Let
〈n
k

〉
denote the number of permutations of 1, 2, 3, . . . , n that can be picked up in exactly

k + 1 passes. By generalizing the reasoning found above, it can be shown that these numbers are
generated by the Pascal-like recurrence〈

n

k

〉
= (k + 1)

〈
n− 1

k

〉
+ (n− k)

〈
n− 1

k − 1

〉
.

These are the Eulerian numbers. Like the binomial coefficients, they have a symmetry:〈
n

k

〉
=

〈
n

n− 1− k

〉
.

Because these numbers count permutations in various classes,

n−1∑
k=0

〈
n

k

〉
= n!.

However, unlike binomial coefficients, for which there exists a closed-form formula in terms of
factorials, there seems to be no simple closed-form formula for the Eulerian numbers, although〈

n

k

〉
=

k∑
j=0

(−1)j
(
n+ 1

j

)
(k + 1− j)n.

The special case k = 1 is what was derived.
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Problem 23:

Isosceles trapezoid ABCD has parallel sides AD and BC, with BC < AD and AB = CD. There
is a point P in the plane such that PA = 1, PB = 2, PC = 3, and PD = 4. What is BC

AD ?

(A)
1

4
(B)

1

3
(C)

1

2
(D)

2

3
(E)

3

4

Answer (B): Let the trapezoid have vertices A(−a, 0), B(−b, c), C(b, c), and D(a, 0), where
a > 0, b > 0, and c > 0. Let P have coordinates (p, q) for real numbers p and q. The given
conditions imply

(p+ a)2 + q2 = 1,

(p+ b)2 + (c− q)2 = 4,

(p− b)2 + (c− q)2 = 9, and

(p− a)2 + q2 = 16.

Subtracting the fourth equation from the first gives pa = −15
4 , and subtracting the third equation

from the second gives pb = −5
4 . Hence

BC
AD = b

a = 1
3 .

OR

Let X and Y be feet of the perpendiculars from P to (parallel) lines AD and BC respectively. (In
the diagram below, point Y lies to the left of segment BC and point X lies on segment AD. The
solution generalizes to other configurations without issue through the use of directed lengths.)

A

B C

D
X

Y

P

1

2 3

4

By the Pythagorean Theorem AP 2 − AX2 = XP 2 = DP 2 −DX2. It follows that DX2 − AX2 =
DP 2 −AP 2 = 42 − 12 = 15, so

AD · (DX −AX) = (DX +AX)(DX −AX) = DX2 −AX2 = DP 2 −AP 2 = 15.

Likewise, BP 2 −BY 2 = Y P 2 = CP 2 − CY 2, so CY 2 −BY 2 = CP 2 −BP 2 = 32 − 22 = 5 and

BC · (CY +BY ) = (CY −BY )(CY +BY ) = CY 2 −BY 2 = 5.

By symmetry, AX +BY = DX − CY , so CY +BY = DX −AX. Therefore

BC

AD
=

BC · (CY +BY )

AD · (DX −AX)
=

1

3
.

OR
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Let ℓ denote the common perpendicular bisector of AD and BC, and let Q denote the reflection
of P across ℓ. By symmetry, AP = DQ = 1, AQ = DP = 4, BP = CQ = 2, and BQ = CP = 3.
Furthermore, APQD is an isosceles trapezoid and is therefore a cyclic quadrilateral. By Ptolemy’s
Theorem AD·PQ+AP ·DQ = AQ·PD, so AD·PQ = 42−12 = 15. Likewise, BC ·PQ = 32−22 = 5.
Therefore

BC

AD
=

BC · PQ

AD · PQ
=

1

3
.

A

B C

D

P Q
ℓ

1

2 3

4

Note: Such trapezoids do in fact exist. For example, if a = 2 and b = 2
3 in the first solution, then

(p, q) =
(
−15

8 ,
3
√
7

8

)
and c = 1

24

(
9
√
7 +

√
1463

)
. A degenerate example has vertices at A(0, 0),

B(1, 0), C(2, 0), and D(3, 0), with P at (−1, 0).
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Problem 24:

How many strings of length 5 formed from the digits 0, 1, 2, 3, 4 are there such that for each j ∈
{1, 2, 3, 4}, at least j of the digits are less than j ? (For example, 02214 satisfies this condition
because it contains at least 1 digit less than 1, at least 2 digits less than 2, at least 3 digits less
than 3, and at least 4 digits less than 4. The string 23404 does not satisfy the condition because it
does not contain at least 2 digits less than 2.)

(A) 500 (B) 625 (C) 1089 (D) 1199 (E) 1296

Answer (E): From the definition, any permutation of an acceptable string (a string satisfying the
conditions of the problem) is acceptable. The following lists show the acceptable strings with the
digits listed in nondecreasing order, based on the pattern of repeated digits. For example, pattern
(3, 1, 1) means that one digit occurs 3 times and each of two other digits appears once.

� Pattern (5): 00000 [1 string]

� Pattern (4, 1): 00001, 00002, 00003, 00004, 01111 [5 strings]

� Pattern (3, 2): 00011, 00022, 00033, 00111, 00222 [5 strings]

� Pattern (3, 1, 1): 00012, 00013, 00014, 00023, 00024, 00034, 01112, 01113, 01114, 01222 [10
strings]

� Pattern (2, 2, 1): 00112, 00113, 00114, 00122, 00133, 00223, 00224, 00233, 01122, 01133 [10
strings]

� Pattern (2, 1, 1, 1): 00123, 00124, 00134, 00234, 01123, 01124, 01134, 01223, 01224, 01233 [10
strings]

� Pattern (1, 1, 1, 1, 1): 01234 [1 string]

The number of different permutations of numbers in each list can be computed with multinomial
coefficients. (

5

5

)
=

5!

5!
= 1(

5

4, 1

)
=

5!

4! 1!
= 5(

5

3, 2

)
=

5!

3! 2!
= 10(

5

3, 1, 1

)
=

5!

3! 1! 1!
= 20(

5

2, 2, 1

)
=

5!

2! 2! 1!
= 30(

5

2, 1, 1, 1

)
=

5!

2! 1! 1! 1!
= 60(

5

1, 1, 1, 1, 1

)
=

5!

1! 1! 1! 1! 1!
= 120
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Finally, the number of strings with a given pattern that meet the conditions is obtained by mul-
tiplying the number of instances of that pattern by the number of different permutations for that
pattern. Thus there are

1 · 1 + 5 · 5 + 5 · 10 + 10 · 20 + 10 · 30 + 10 · 60 + 1 · 120 = 1296

strings in all.

OR

Replace 5 with a general value of b, and think of the problem as asking for the number of base-
b nonnegative integers, with leading zeros allowed, that meet the given condition—that for each
j ∈ {1, 2, 3, 4}, at least j of the digits are less than j. Temporarily extend the numbers to base

b+1, and consider all (b+1)b b-digit numbers. These numbers can be divided into (b+1)b

b+1 teams of
size b+ 1 such that every set of b-digit numbers of the form

{a1 . . . ab, a1 + 1 . . . ab + 1, . . . , a1 + b . . . ab + b}

forms a team, where addition of digits is done modulo (b+ 1). Imagine testing whether each team
member meets the stated condition as follows. Starting with the first digit and continuing through
the bth digit, place the digits on a (b+ 1)-hour clock face so that digit i goes on hour i if hour i is
empty. Otherwise digit i goes on the next empty hour clockwise after i. All b digits fit, and one
hour will be left empty. The teams are constructed so that the empty hour for each team member
is one greater, modulo b + 1, than that of its predecessor, so exactly one team member will leave
hour b empty. The team member that leaves hour b empty meets the stated condition because in
order not to use hour b it must have at least i digits less than i for each i < b, and it must not
contain digit b. Team members that fill hour b do so because for some i they fail to meet the stated
condition. They fail to have i digits less than i, that is, they have b− i+ 1 digits greater than or
equal to i. These digits fill hours i through b.

Each team has exactly one number that meets the stated condition, so the number of such numbers
is

(b+ 1)b

b+ 1
= (b+ 1)b−1.

For b = 5 the number is 64 = 1296.

Note: This problem is related to the subject of parking functions. See sequence A000272 in the
On-Line Encyclopedia of Integer Sequences. The idea of the second solution is attributed to Henry
O. Pollak.
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Problem 25:

Let R, S, and T be squares that have vertices at lattice points (i.e., points whose coordinates are
both integers) in the coordinate plane, together with their interiors. The bottom edge of each
square is on the x-axis. The left edge of R and the right edge of S are on the y-axis, and R contains
9
4 as many lattice points as does S. The top two vertices of T are in R ∪ S, and T contains 1

4 of
the lattice points contained in R ∪ S. See the figure (not drawn to scale).

R

S T

x

y

The fraction of lattice points in S that are in S ∩ T is 27 times the fraction of lattice points in R
that are in R∩T . What is the minimum possible value of the edge length of R plus the edge length
of S plus the edge length of T ?

(A) 336 (B) 337 (C) 338 (D) 339 (E) 340

Answer (B): Let a− 1, b− 1, and c− 1 be the respective edge lengths of R, S, and T , and let A,
B, and C be the respective sets of lattice points in R, S, and T . Then there is an integer k such
that a = 3k and b = 2k, and |A| = a2 = 9k2, |B| = b2 = 4k2, and |C| = c2. Because A∩B contains
b lattice points on the y-axis, |A ∪ B| = a2 + b2 − b = k(13k − 2). Thus 4c2 = k(13k − 2), so k is
even. Furthermore, if k is a multiple of 4, then the greatest power of 2 that divides the right side
is odd, so k ≡ 2 (mod 4).

Note that
|B ∩ C|
4k2

=
|B ∩ C|
|B|

= 27 · |A ∩ C|
|A|

= 27 · |A ∩ C|
9k2

,

implying that |B ∩ C| = 12 · |A ∩ C|. If the lower left vertex of T is (−j, 0), then the lower right
vertex is (c− 1− j, 0), and

12 =
|B ∩ C|
|A ∩ C|

=
j + 1

c− j
.

Therefore j+1 = 12(c−j), from which c ≡ −1 (mod 13), and k ≡ −2 (mod 13). Hence k = 52n−2
for some positive integer n. The least possible value of k is 50, giving (a, b, c) = (150, 100, 90). The
squares in this case have side lengths 149, 99, and 89, and the requested sum is 149+99+89 = 337.
(Thus it turns out that R contains 22500 lattice points, S contains 10000 lattice points, T contains
8100 lattice points, 630 lattice points of T are contained in R, and 7560 lattice points of T are
contained in S.)
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Problems and solutions were contributed by Theodore Alper, Sophie Alpert, David Altizio, Risto
Atanasov, Bela Bajnok, Chris Bolognese, Miklos Bona, Silva Chang, Steven Davis, Steve Dunbar,
Zuming Feng, Mary Flagg, Zachary Franco, Peter Gilchrist, Jon Graetz, Andrea Grof, Jerrold
Grossman, Thomas Howell, Chris Jeuell, Daniel Jordan, Jonathan Kane, Ed Keppelman, Azar
Khosravani, Sergey Levin, Joseph Li, Ioana Mihaila, Hugh Montgomery, Lucian Sega, Zsuzsanna
Szaniszlo, Kate Thompson, Agnes Tuska, David Wells, Kathleen Wong, and Carl Yerger.
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